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ABSTRACT

A linearized model oC rotorcraft dynamics has been

developed through the use of symbolic automatic equation

generating techniques. The dynamic model has been formulat-

ed in a unique way such that it can be used to analyze a

variety of rotor/body coupi_ing problems including a rotor

mounted on a flexible shaft with a number of modes as well

as free-flight stability and control characteristics.

Direct comparison of the tir_e response to longitudinal, lat-

eral and directional control inputs at various trim condi-

tions shows that the linear model yields good to very good

correlation with flight test. In particular it is shown that

a dynamic inflow model is essential to obtain good time

response correlation, especially for the hover trim condi-

tion. It also is shown that: the main rotor wake interaction

with the tail rotor and fixed tail surfaces is a significant

contributor to the respon_.e at translational flight trim

conditions. A relatively _imple model for the downwash and

sidewash at the tail surfaces based on flat vortex wake

theory is shown to produce cood agreement.

Then, the influence of rotor flap and lag dynamics on

automatic control systems feedback gain limitations is

investigated with the model. It is shown that the blade
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dynamics, especially lagging dynamics, can severely limit

the useable values of the feedback gain for simple feedback

control and that multivariable optimal control theory is a

powerful tool to design high gain augmentation control sys-

tem. The frequency-shaped optimal control design can offer

much better flight dynamic zharacteristics and a stable mar-

gin for the feedback systeln without need to model the lag-

ging dynamics.
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Chapter I

INTRODUCTICN AND BACKGROUND

I.I Introduction

Aeroelastic and aeromecnanical

response problems associated with

stability, control and

rotary-wing aircraft rep-

resent some of the most challenging problems in the area of

dynamic systems. Due to the complicated nature of the prob-

lem, stability and control analysis is usually treated sepa-

rately from aeroelastic and aeromechanical stability.

Aeroelastic analyses usually concentrate on the character of

the system eigenvalues and do not concern themselves with

system response characteristics. In many instances, stabil-

ity and control analyses are based on a quasi-static, rigid-

body stablity-and-control-derivative model in which the

blade dynamics are neglected and the rotor lag and flap

angles are determined from the instantaneous value of the

body angular and translational displacements, rates, and

accelerations.

Although use of the conventional quasi-static stability

derivative model is adequate for many applications associat-

ed with low-frequency and _teady-state flight behavior and

promotes physical insight, the true physical behavior of the

highly coupled rotor/fuselage dynamical system can only be

'" 1 --
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captured by developing a mathematical model based upon a

consistent formulation in _:hich the influence of the coupled

body blade motion is properly incorporated. Many years ago,

C.W.EIIis[I] found that the conventional quasi-static

stability-derivative mode] was not representative of the

higher frequency short-period dynamics, owing to the strong

influence of the unmodeled rotor

S.V.Cardinale[2] concluded that the

excite the body's natural modes,

modes. R.E.Donham and

oscillating rotor could

and showed that a body

attitude feedback system had an important influence on the

total system stability. Hansen[3] has noted the importance

of the flapping dynamics in parameter identification stud-

ies.

Along with the development of feedback control systems,

especially with an increasing emphasis on superaugmented,

high-gain flight control systems for military rotorcraft in

order to meet the requirements for demanding misson tasks

such as nap-of-the-Earth(N.gE) flight, blade dynamics are

increasingly important in the flight dynamic analysis of

helicopters. In the design and analysis of such high gain

control systems, it is essential that high-order dynamics of

the system components be adequately modeled. In theoretical

analyses, K.Miyajima[4] has found that the blade-flapping

regressing mode should be :,ncluded in a stability and con-

trol augmentation system de_ign, otherwise a very important

oscillatory mode with short period frequencies would not be
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included. H.C.Curtiss[5] has found that for helicopter con-

trol systems attitude fee_:,ack gain is limited primarily by

body-flap coupling, and _:'ate gain is limited by the lag

degrees of freedom. It i_ also shown that dynamic inflow

produces significant changes in the modes of motion and

response of the system. W.E.HalI[6] has shown that, for

tight control, neglecting the rotor dynamics in designing a

high gain feedback system results in unstable closed-loop

responses when the rotor flap dynamics are included. In

practice, the operators of variable-stability research heli-

copters have long been awame of severe limitations in feed-

back gain settings when attempting to increase the bandwidth

of flight control systems. These same limitations have also

been encountered in the helicopter industry, where achiev-

able stability augmentation system gains obtained from

flight tests have often been far below predicted values[7].

Even for the vibration analysis of helicopters it has been

concluded that the method of rotor induced vibration pre-

diction by applying the rot.mr forces and moments acting on a

rigid support to the flexible airframe can lead to large

errors of either over or under prediction of vibrations[8].

In addition, with the shift of emphasis in hingeless and

bearingless rotor design to soft-inplane configurations,

coupled rotor/fuselage mechanical instability becomes one of

the main concerns of designers and researchers. This is not

only because there is strong coupling between the rotor and
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fuselage and therefore the aeromechanical stability charac-

teristics are highly sensitive to aerodynamic and structural

feedback, but also because the influences of the aeroelastic

coupling, which can play a key role in alleviating aerome-

chanical instability, often are different on the coupled

rotor/fuselage system than on the isolated blade[9].

Hence, there is a wides}Dread need for analyses capable of

modeling coupled rotor/fuselage aeroelastic or aeromechani-

cal systems.

1.2 Approaches For Analy:_is of Coupled Rotor/Fuselage

System

For a subject as compl_x as coupled rotor/fuselage sys-

tems, an adequate understanding of physical phenomena can

not be attained unless a reasonably accurate analytical rep-

resentation of the system has been developed and verified.

Such a representation is necessary to provide a usable

design tool, to develop _n understanding of configuration

behavior through systematic parametric studies, and to

search for and evaluate the feasibility of particular

advanced configuration concepts. Because of the complexity

of the description of the coupled rotor/fuselage system, an

important element of the development of practical analytical

tools is to determine what is an acceptable level of approx-

imation for the various parts of the analysis. It is impor-

tant to avoid making a design tool impractically large for

efficient computation.
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Several mathematical approaches are available for heli-

copter analysts to perform a coupled rotor/fuselage analy-

sis. The most popular ones are mode displacement, force

integration, and matrix diEplacement methods.

The mode displacement method allows a completely coupled

rotor/fuselage system to be analyzed by replacing rotor

inertia couplings in the fuselage equations with stiffness

coupling; therefore the use of it enables a simplified

sequential solution of the coupled rotor/fuselage dynamic

equations. Most analysis methods result in inertial

coupling between the rotor and the fuselage in both sets of

equations. However, the mode displacement approach allows a

simpler stiffness type co_ipling of the rotor degrees of

freedom in the fuselage equations. This is possible since

modal coefficients are used to calculate hub shears and hub

moments, eliminating the acceleration terms in the fuselage/

pylon equations that are d1_e to the rotor degrees of free-

dom. The sequence of calculLation begins with three indepen-

dent computations for airframe and rotor aerodynamic forces,

and hub shears and moment:_. The computation of the hub

shears and moments is the process which actually uses'the

mode-displacement method. [?he aerodynamic forces acting=on

the airframe and the rotor are also calculated. These aero-

dynamic forces form the forc:ing function for the rigid-body

fuselage accelerations. After the rigid body fuselage accel-

erations are calculated, they are used in conjunction with

ORi_N_L _L:_: i_

OE PO0_ <_t:;:/_.;i'_
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the hub shears and moments to calculate the acceleration of

pylon coordinates at the fc,llowing step. Additional inertia

forces on the rotor which _,_ere not included in the calcula-

tion of the rotor modes are calculated from the fuselage and

pylon accelerations. These inertia forces are then added to

the rotor aerodynamic force calculated previously in order

to calculate the accelerations of the rotor modal coordi-

nates. Thus, acceleratior_s are calculated for all of the

degrees of freedom without having to solve a large set of

simultaneous algebraic equations.

The force integration method is used to compute hub

shears and moments by integrating dynamic and aerodynamic

forces along each rotor blade. The analysis treats the rotor

equations separately from those of the nonrotating system.

In the rotor equations, inertial coupling terms due to

pylon/fuselage motions are written explicitly and assumed to

be known at a particular time point. To solve the rotor

equations of motion at time t, the hub and pylon displace-

ment, velocity, and acceiieration vectors are obtained from

the solution of the equations of motion for the nonrotating

system at the previous tir_e point. A predictor-corrector

method is used for numerical integration of the rotor accel-

eration variables to obtain rotor velocity and displacement

components. Equations of the pylon/fuselage system are

derived with hub shears and hub moments appearing on the

right side of the equation_. The hub forces are calculated



by integrating

tip to blade root for each blade

blades. The force integration is

at which the predictor-corzector

7

inertial arid aerodynamic loading from blade

and summing up for all the

performed to a time point

has converged the solution

of the rotor equations. C:iven the hub shears and moments,

the equations of motion for the pylon/fuselage are solved.

The results define the huh: motions which provide the fuse-

lage inertial coupling terms in the rotor equations at the

next time point.

These two approaches are widely used in the helicopter

industry to calculate the rotor loads and the response of

the coupled rotor/fuselage system. The disadvantage of these

approaches is due to the fact that time histories are

obtained by input integration so that quantitative stability

analysis is not applicable, and they are not convenient for

the systematic parametric studies as well. For most aeroe-

lastic and aeromechanical stability and control problems,

the matrix displacement method may be a good alternative.

The matrix displacement method uses a generalized

coupling procedure which allows analysis of structural com-

ponents in rotating and ncnrotating reference frames. The

method automates the dynamic couplings between the rotating

and nonrotating systems and takes advantage of the high

speed computer for the algebraic manipulation. Vector

transformations are used in the method to generate position

vectors for blade and fuselage points in fixed coordinates.



Then by using the Lagrang_i.an approach,

inertial contributions of the equations

8

for example, the

of motion for the

coupled rotor/fuselage sys_em are obtained. The same trans-

formation also is used to generate air speeds and incidence

angles relative to local b[Lade sections, and through appli-

cation of strip theory, for example, to obtain the aerody-

namic generalized force co1_tributions for the system. The

disadvantage of the matrix displacement method is that some

of the dynamic coupling tel-ms carried in the component equa-

tion are cancelled if the equations are derived explicitly

for the coupled system. This consumes more computer time and

possibly degrades accuracy in the numerical solution.

Therefore, the matrix displacement method suggests a via-

ble engineering tool for solving coupled rotor/fuselage

problems. In this thesis, with the help of a symbolic com-

puter processor, the matrix displacement method is used to

obtain a coupled rotor-fu_elage helicopter system descrip-

tion.

1.3 Outline of Previous _iork

A number of powerful analyses which have been developed

by industry and the governn.ent are developed or verified for

only a particular technic_l problem that reflects the spe-

cific interest of the oricinating organization. A typical

example is shown in Ref.10. The coupled rotor/fuselage sys-

tem model is designed for the Black Hawk simulation. The
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model is a total system description and allows the simula-

tion of any flight condition which can be experienced by a

pilot. The mechanical and aerodynamic data used in the mod-

el are provided by wind tunnel tests for full angle of

attack range.

Several researchers constructed mathematical models for

the general coupled rotor/fuselage systems. W.Warmbrodt and

P.Friedmann [II] have derived the governing equations of

motion of a helicopter rotor coupled to a rigid body fuse-

lage, which can be used to study coupled rotor/fuselage

dynamics in forward flight. The final equations are pre-

sented in partial differential equations and the blade equa-

tions of motion are written in a rotating reference system

whereas the matching conditions between the rotor and fuse-

lage are written in a nonrotating reference frame.

W.Johnson[12] has developed a comprehensive analysis for

rotorcraft which is capable of modeling coupled rotor/

fuselage problems by an integrated Newtonian approach. A

modal representation is used to transform the partial dif-

ferential equations

which is equivalent

orthogonal modes of

to ordinary differential equations,

to _ Galerkin analysis based on the

free vibration for the rotating blade.

Its solution procedures for the transient, aeroelastic sta-

bility, and flight dynamics analyses begin from the harmonic

balanced trim solution. Then the flight dynamics analysis

calculates the rotor and airframe stability derivatives, and



constructs linear

rigid body motions;

i0

differential equations for the aircraft

the _oles, zeros, and eigenvectors of

these equations define the aircraft flying qualities. The

transient analysis numerically integrates the rigid body

equations of motion for a prescribed control or gust input.

The aeroelastic stability analysis constructs a set of lin-

ear differential equations

rotor and aircraft; the

define the system stabilitF.

describing the motion of the

eigenvalues of these equations

Although their intentio-1 was to produce an analysis that

is applicable to a wide range of problems and a wide class

of vehicles, these nonlinear, periodic-coefficient, partial

or ordinary differential equations are too complex to get

physical insight for general understanding and the theoreti-

cal analysis. They are also not convenient for the system-

atic parametric studies. For analytical simplicity and an

use as basis of the desig::l of feedback control systems, a

linear description of the :_ystem is highly desirable, espe-

cially if it can be shown to agree with experiment.

Owing to the complexitlf of including blade dynamics in

forward flight, linearized models in the literature are lim-

ited to the hover case.

Hodges [13] has developed a system of linear, homogenous,

ordinary differential equations which is suitable for model-

ing the aeromechanical stability of both bearingless and

hingeless rotor in hover. The flexbeam equilibrium deflec-
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tions are calculated through a nonlinear numerical iteration

process, and the flexbeam szructural loads for small pertur-

bation of the equilibrium are determined through numerical

perturbation of the equilibrium solution. By using the mul-

tiblade coordinate transformation, the terms with periodic

coefficient are removed; Therefore, the resulting constant-

coefficient equations can be solved as a conventional eigen-

value problem.

Another derivation of the air resonance problem in hover

of an N-bladed hingeless rotor helicopter has been developed

by Levin[14]. In his study the final equations of_dynamic

equilibrium are reduced to ordinary differential form by

using Galerkin's method wi_h a relatively small number of

rotating blade modes. Prow. sion for introducing active con-

trol of the rotor with the intent of eliminating the air

resonance instability is included in the formulation.

A third model[15] by Lytwyn and Miao is obtained by

means of the Lagrangian procedure. The virtual hinge repre-

sentation has been used fo:_ the first in-plane (lead-lag)

and the first vertical bend_ng modes of each of the blades.

The most important assumptions upon which these formula-

tions are based are: (I) the helicopter is in hover with low

disc loading (low inflow ratio), (2) the rigid fuselage has

only two translational degrees of freedom and two rotational

degrees of freedom; vertical translation and rotation about

the vertical axis (yawing) are eliminated, (3) the rotor



consists of three or more hLngeless blades, (4)

can bend in two mutually perpendicular direction

the elastic axis.

12

each blade

normal to

Several kinds of model mentioned above have been used in

analyses of the aeroelastic and aeromechanical stability,

response, and control problem. Hodges has conducted a theo-

retical study of aeromechanical stability of bearingless

rotors in hover by comparin_ the hub-fixed motion, i.e. iso-

lated blade stability, with the case when coupled rotor/

fuselage motion is considered. His studies dealt mostly

with a soft-in-plane configlration using quasisteady aerody-

namics. Straub and Warmbrodt[16] have studied the use of

active blade control to increase helicopter rotor/fuselage

damping. The chosen feedback parameters include cyclic rotor

flap and lead-lag states, and the study focuses on ground

resonance. Curtiss[5] has studied the influence of rotor

dynamics and dynamic inflcw on the stability and control

characteristics of single rotor helicopter in hover, and

discussed the body attitu6e and rate feedback limitations

which arise due to rotor d_namics and dynamic inflow.

The restriction for obt_ining a linearized model for for-

ward flight is due partly to the complexity of the blade

motion of the helicopter _o that the algebra is increased

substantially. This has led to attempts to share the alge-

bra with computers through symbolic processors. Both general

and special purpose programs have been developed and are
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available. Another difficulty faced for extending the lin-

earized modeling to forw_rd flight is that the multiblade

transformation will not _emove

Therefore the resulting linear

will be time-varying. However,

all periodic coefficients.

dynamic system description

it has been found that the

constant coefficient approximation for the remaining period-

ic coefficients is satisfactory for low-frequency modes

under trimmed conditions[17]. Furthermore, all of the lin-

earized models for hover assume that yaw motion and vertical

motion of the helicopter are totally uncoupled; this is not

the case for forward flight. In addition, the tail rotor and

fixed tail surfaces, whicln operate in an extremely adverse

aerodynamic and dynamic environment, must be taken into

account. As a result, a celatively simple induced velocity

model at tail position due to the influence of the main

rotor wake is needed for a good overall system modelling.

With this background information established, the remain-

der of this thesis can be outlined. The first task undertak-

en will be to construct a linearized dynamic mathematical

model for coupled rotor/fuselage helicopter system for both

hover and forward flight by use of symbolic automatic equa-

tion generating techniques Also a relatively simple model

for the downwash and sidewash at the tail surfaces based on

flat vortex wake theory is employed to take the main rotor

wake interaction with the tail rotor and fixed tails into

account. The model will then be verified by comparing the
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response time histories :riot various prescribed control

inputs at various trim conditions with the flight test

results of Ref.18, which is obtained by a flight test pro-

gram solely for the purpose of validating mathematical mod-

els of the Black Hawk helicopter. In addition, a study will

be made of the influence of the blade flap and lag dynamics

on automatic control system feedback gain limitations at

hover and translational flight conditions.



Chapter II

A LINEAR DYNAMICMATHZMATICALMODELFOR COUPLED

ROTOR/FUSELAGESYSTEM

2.1 Background and Introdaction

One distinction of the zoupled rotor/fuselage system is

the fact that the analysis must accommodate both rotating

and nonrotating coordinate systems. For the coupled rotor/

fuselage system, the equations for each blade, which are

usually written in a coordinate system rotating at a con-

stant velocity, are transformed to a nonrotating coordinate

system, to be combined with each other and with the fuselage

system. Consequently, it is difficult to obtain the system

description using a Newtonian approach because the required

blade acceleration terms are very complex. The Lagrangian

approach, which requires only velocity terms and position

terms, is much more convenient for overall system modeling.

Another distinction of the coupled rotor/fuselage system

is the increased number o_ degrees of freedom, which sub-

stantially increases the algebraic complexity in expressing

the inertia and aerodynamic loads. In order to generate

reasonably comprehensive aeroelastic equations of motion for

a helicopter rotor, seve]al axes of reference are usually

required in the analysis. Thus, a material point on a rotor

- 15-
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blade can most conveniently have its position coordinates

defined by means of successive axis transformations.

Although none of the transformations that change the co-

ordinates of a point from one axis system to another may be

particularly complicated, when equations of motion are

derived through the use of Lagrange's equations, the exer-

cise can prove quite arduous. The derivation of the equa-

tions involves a certain amount of differentiation, which,

combined with the succes:!_ive transformations, leads to an

enormous amount of work on paper for the analyst. Further-

more, the possibility of errors creeping into the analysis

is almost unavoidable.

Fortunately, there are serveral symbolic computer proces-

sors available for gener_l computer systems so that it is

possible to develop the system equations directly on the

computer. The program gc_nerates the steady-state and lin-

earized perturbation equEitions in symbolic form and then

codes them into FORTRANsubroutines. Subsequently the coef-

ficients for each equatior_ and for each mode are identified

through a numerical program. Through the use of symbolic

automatic equation generating techniques, the final system

equations are obtained in a systematic way. This also makes

it relatively easy to rigorously investigate the effect of

various ordering schemes cn the calculated motion dynamics.
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General Description of Model

The complete dynamic description of the multidimensional

system is formulated by means of the Lagrangian procedure.

The final set of linear second-order differential equations

is obtained by a perturbation analysis performed on the set

of original nonlinear equat:_ons.

The model has N degrees of freedom, each associated with

a generalized coordinate and a corresponding mode shape.

The model includes a number of rotor blades on one hub and a

fuselage. Each rotor blade undergoes flap bending and lag

bending; the torsional deflections are not included. Qua-

sisteady strip theory is _ised to obtain the aerodynamic

loads. Unsteady aerodynamic effects are introduced through

dynamic inflow modelling. Dynamic stall and reverse flow

effects are not included.

In this work, the model is of order 24 or 27 depending on

whether dynamic inflow is included for a better modelling of

unsteady aerodynamics. The fuselage has six degrees of

freedom: vertical, longitudinal, and'lateral translation,

pitch, roll, and yaw motions, each associated with two state

variables. The equations cf motion are formulated in such a

way that they can be extended to N degrees of freedom to

include the effects of flexibility between fuselage and the

hub without any change in the blade motion part of the mod-

el. Each blade has 2 deglees of freedom, flapping and lag-

ging, each corresponding 41o two state variables. When the
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blade motion is converted to the fixed frame through the use

of multiblade coordinates, six degrees of freedom result

(e.g. coning, lateral and longitudinal tilt of the rotor

plane for flap) each associated with two state variables.

Dynamic inflow adds three more state variables. Control

inputs are collective pitc_ of the blade, lateral and longi-

tudinal cyclic pitch of the blade, and collective pitch of

the tail rotor. Rotor RPM is assumed constant. Blade pitch

changes due to flapping, Lagging, and fuselage deformation

and motion by the rotor ]:hub geometry and elastic coupling

can be taken into account.

The equations of the _ystem are obtained by algebraic

manipulation performed with the symbolic system REDUCE on

the IBM computer at computer center at Princeton University,

and is checked with the syr_bolic system MACSYMA at the Labo-

ratory for Control and Aut¢:mation at Princeton.

2.3 Reference Frames

Because we use a Lagrargian approach, we have to begin

our systems of coordinates in an inertial frame, the E sys-

tem, the earth axis. The basic systems of coordinates are

the Fi and Fz systems which are shown in Fig. 2-1 and Fig.

2-2. The origins of these systems are placed at undisturbed

and disturbed hub centers respectively while Zf coincide

with the shaft direction, and Xf points toward the rear of

the helicopter. These are systems which do not rotate with
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the hub. The F system moves due to the fuselage
i

motion without perturbation, a Galilean frame. The F
Z

2O

trim

sys-

tem moves relative to F due to small perturbations which
I

result from disturbed fuselage rotations and translations.

The equations are formalized so that the elastic deforma-

tions may also be included, depending on the definition of a

transformation expressing the hub motion relative to the

fuselage in terms of the generalized coordinates. In the

linearization of the system, this transformation is also

linearized under an assumption of small perturbations and is

assigned as a set of system input parameters to offer more

flexibility for the model. By selection of the set of the

input parameters, it is possible to investigate the dynamics

of a rotor on a flexible shaft or the free motion of a heli-

copter like that in this thesis, or some combinations of the

two.

The third system of coordinates is the H (hub) system,

which is rotating with the hub (See Fig. 2-3). The co-

ordinate axes Z h and Zfz coincide, while the H system

rotates about the Zfz axis with an constant angular veloci-

ty, relative to the F sys%em When the azimuthal angle of2

the H system relative to the F system is zero the two sys-2

tems coincide. The next system of co-ordinates is the blade

system B (See Fig. 2-4), which is fixed to the rigid blade

and is displaced from the H system by offset and rotates due

to lag and flap. See Appendix A for more detail.
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2.4 Rotor Blade Model

The rotor blade is assumed to be a rigid beam with an

offset hinge for a fully articulated rotor. A proper combi-

nation of a hinge offset and springs about the hinge can be

used to represent a hingeless rotor. This model can incorpo-

rate the effects of blade and hub stiffness by two sets of

springs inboard and outboard of the hinge. Furthermore,

flap-lag-pitch-fuselage structural coupling can be easily

incorporated, Spring restrained hinges can be used to model

a bearingless rotor.

The coning angles both fgr flapping and lagging are con-

sidered as variables beca/se in forward flight there is

coupling between the coning and the first harmonic terms.

2.5 Inertial Analysis

The position of an element of a blade first is written in

the B frame. It is assume:_ that the blade can be modelled

as a slender rod with all of its mass located on [Xb, O,O].

Using a series of transformations, we can express the posi-

tion of the blade element in the inertia axis, the E system.

Then, it is straightforward to obtainthe local velocity and

the kinetic energy. The same approach applies to the fuse-

lage as well. After integrating along the blade, combining

the blade with the fuselage and taking required differentia-

tions, the contribution of the kinetic energy to the equa-

tions of motion is obtained The kinetic energy contribu-

tion of the tail rotor is neglected.
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For the potential energy, the terms due to the gravity of

the blades are neglected but those from the fuselage are

included. To model a hingeless or bearingless rotor,

other spring potential terms

elastic potential resultJ ng

flapping and lagging.

are added for including

from the deformations of

two

the

the

2.6 Rotor Blade Aerodynamic Model

First, we get expressions of the normal and tangential

velocities at a blade element in the B frame, then apply

strip theory to obtain the lift and drag at local blade sec-

tions. After integration along the blade and a transforma-

tion, we get expression_ of the aerodynamic forces and

moments of the blade in the hub axis H. The same approach

applies to the tail rotor, the vertical tail and the hori-

zontal tail as well, the only difference is that a little

algebra is used to treat _:he delta 3 feedback of the tail

rotor. Only the thrust oi: the tail rotor is considered in

this work.

The tail rotor and fixed tail surfaces can experience

aerodynamic interference effects from many sources. Only the

components of flow from the main rotor are included in this

model. However, the equations are formulated to allow easy

insertion of other components. The total velocity components

for the tail rotor and fixed tail surfaces are made up of

contributions from the basic body axes translational and
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angular velocities and rotor wash. Dynamic pressure loss is

introduced by factoring _he components of the free stream

flow. The actual total cynamic pressure is calculated from

the resultant velocity at tail rotor and fixed tail surfac-

es. This allows a more representative definition of dynamic

pressure at low speeds where the downwash velocities predom-

inates.

Then the total virtual work due to the aerodynamic forces

is expressed as a function of the generalized coordinates by

summarizing all virtual work done by each aerodynamic force

or moment, in which extre_ne care must be exercised_because

any inconsistency with the corresponding inertia term will

result in large errors at final dynamic equations after the

linearization. Taking re,fired differentiations, we get the

generalized forces for the equations of motion.

2.7 Dynamic Inflow

The rotor blade operate_!_ in an unsteady environment; con-

sequently unsteady aerod_,namics can have a significant

influence on the aeroelastic and aeromechanical stability

characteristics of helico_,ters. To describe the low fre-

quency unsteady aerodynamic behaviour of the rotor, there

are relatively simple unsteady aerodynamic models, known as

inflow models, which agree with experiment and can be con-

veniently incorporated in aeromechanical and aeroelastic

stability and control analyses of helicopters. These sim-



ple models are

parameters which represent essentially

induced flow through the rotor disk.

The induced flow-field acting on

25

based upon the definition of certain inflow

the unsteady wake-

a helicopter rotor

affects both rotor equilibrium (trim loadings) and rotor

response (transient loading_). Hence, it is reasonable to

expect that the induced flc, w will also be affected by the

oscillations of the rotor. Following this assumption, the

inflow is written as a comh:ination of a steady inflow for

trim loadings and a dynamic perturbation for transient load-

ings. Then, the total induced velocity normal to the rotor

disk is expressed as

V = v _ v tl) 4 %'(t[i cosy ÷ V (t) sin_ (i)n no o c s

where V , V , and v are components of the dynamic
o c 5

inflow perturbation. Th_ cynamic inflow components can be

related to the perturbed thrust AF, the perturbed pitch and

roll moments AM , LM The equations are written in form
y ×

[L] [M] {V'} ÷ {V> = [L] [D] {AF> (2)

where {V)_= [V , V , V ] and _ ZLlr}w [AT, 21M , AM ]
o c s y x

The matrix [L] is the static coupling matrix between

induced velocity and aeroc[ynam_c loads, the matrix [M]

assumes the role of an inertia of the air mass, the product

of ILl[M] is a matrix of time constants, and the matrix [D]

is a dimension adjustor.

A number of such inflow _lodels are available in the lit-

erature. In this work, the steady inflow is obtained

OF. PO >R %' ,,.'__..,"<
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from momentum theory for hover and from classical vortex

theory for forward flight. It has a first harmonic distri-

bution as a function of wake skew angle. The dynamic model,

i.e. the [M], [L], and [D] matrices, come from Pitt's model

based on a rigorous solutior_ to actuator-disk theory. The

details of the model can be found in Ref.21.

There is no simple method available to include the

effects of the unsteady wake of the rotor on the tail rotor

and horizontal tail. Considering the dynamic inflow models

represent the global effects of the unsteady wake, the

effects of the unsteady wak_ on the horizontal tail and the

tail rotor are included by directly extending the dynamic

inflow components out of the rotor plane, which is done by

assuming that the dynamic inflow at tail rotor and tail sur-

faces are of two times of the value on the line Xfz=R ,

2.8 Linearization

The nonlinear equations of motion are of the form:

Q" = F( Q, Q', u, T ) (3)

Introducing multiblade coordinates, which transforms the

blade-fixed generalized cocrdinates to nonrotating hub-fixed

generalized coordinates, end omitting periodic higher har-

monic terms, a constant coefficient approximation to the

original periodic system i_!_ obtained:

Q" = F( Q, Q', u ) (4)
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The process of linearization consists of expressing the

time dependence of the generalized coordinates and inputs as

the sum of the steady-state value and the time-dependent

perturbation about the former.

Qi (t) = Q. @ _QjCt)
Io (5)

U.Ct)_ = U._o * _Qi Ct) (6)

Equations (5) and (6) are substituted into the nonlinear

equations of motion, and terms containing squares of the

perturbation quantities a]-e neglected. The perturbation

quantities are set equal t(, zero to obtain the steady-state

values of the generalized (oordinates and the control inputs

in the trim condition.

F( Qo "Uo) = 0 >> Qo Uo (7)

The final form of the cynamic equations can be symboli-

cally written as

MCQo'Uo)_Q"+CCQo'Uo)_Q'+K(Qo'Uo)_Q=BCQo "Uo)_U(8)

This linear time-invaring system can

order form:

X' = AX + B U

be written in first

(9)

X and U are the state variables and control input vector:

X = [ #o" _I' _z' Co" C,, [:z"e, -@, -_, y, x, z

" . -G.#. £. £. vo.v=. v,,"

T
U = [ Ai,, BI,, et]

The collective pitch angle of the main rotor is not

included in the control vector of the perturbation equations

because collective input wece not investigated.



C1_apter III

INFLUENCE OF THE R(_TORWAKEON THE TAIL ROTOR

AND FIXED TAIL SURFACES

3.1 Introduction

It has been found fron wind tunnel tests that the rotor

wake influences the aerocynamics of the tail rotor in for-

ward flight [22] and that the effect of rotor wake on the

horizontal tail produces a significant contribution to yaw

pitch coupling [23], which arises because of the angle of

attack distribution across the span of the horizontal tail.

The angle of attack can vary by as much as I0 degrees from

one tip to the other.

In this work it has been found that the transient

response in forward flight, especially the pitch response,

is very sensitive to the _reatment of the influence of the

rotor wake on the vertical tail, the horizontal tail, and

the tail rotor. A simple "_heory based on a flat vortex wake

model has been employed to obtain estimates of vertical var-

iation of the sidewash at the tail rotor and vertical tail

and the horizontal variat_;on of the nonuniform downwash at

the horizontal tail. The mathematical details of the wake

model used in this work are discussed in Ref.24 and are also

given in Appendix C. Or_ly a brief description is given

here.

- 28 -
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Theory of Lifting Ai]'screws with a Flat Vortex System

is based upon the following

3.2

The flat vortex wake model

assumptions:

(I) The vortex wake folmed by free vortices leaving the

rotor blades moves downstleam without any downward motion.

This should be a good approximation for helicopters with

sufficiently high flight speeds. Experience and theoretical

considerations indicate that this assumption is reasonable

for a considerable range of flight speeds of helicop-

ters. J25]

(2) The intensity of the free vortices leaving the same

section of the blade at various azimuth angles is constant.

This means that an average value of the circulation at a

given radius r of the blade is used to replace the time var-

ying circulation value, which depends on the azimuth angle.

(3) The free vortices in the rotor wake form a continuous

surface of vorticity. This is due to the fact that for most

helicopters the cruise tip speed is at least 2.5 times high-

er than the velocity of flight, and the rotor has 3 or 4

blades so that the density of free vortices would be high

enough to be considered as _ continuous surface.

Under these three assumligtions, consider a free vortex

layer which springs from the blade at a given radius r with

a constant circulation. ,)ne can find, after some simple

mathematical derivation, the final vorticity surface is con-

sisted by a lateral vorticity surface within a circle of
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radius r and centred at hub, and a longitudinal vorticity

surface which coincides with the whole wake surface. The

circulation per unit len_rth of the lateral vortex layer is a

constant, which is propo1tional to the intensity of the free

vortex layer, and inversely proportional to the advance

ratio and rotor radius. The circulation per unit length of

the longitudinal vortex layer is a function of lateral posi-

tion y, which is also proportional to the intensity of the

free vortex layer, and inversely proportional to the advance

ratio and rotor radius. Then under the assumption that the

circulation distribution along the rotor radius, averaged

over the azimuth, is par._bolic, the distribution of vortex

strength can be determin_d and the induced velocity at any

point in space can be cal(;ulated by applying the Biot-Savart

law, and integrating ove_- the whole blade. This model pro-

duces lateral and vertica[i components of the induced veloci-

ty.

3.3
Influence of the Rotor wake on the Tail Surfaces

To estimate the influence of the rotor wake on the tail

rotor and fixed tail surfaces, it is assumed that the down-

wash and sidewash distributions in the trim condition are

given by distributions calculated relative to the centerline

of the wake at X = R. Pertarbations in sideslip and angle of

attack cause the centerlin_ to move changing the correspond-

ing aerodynamic forces and the moments.
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of the rotor disk due to

equivalent to the fore

classical vortex theory,
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induced velocity contribution in the plane

the lateral vortices is physically

and aft variation produced by the

and the average induced velocity

due to the longitudinal vortices is equivalent to the uni-

form part from the classical vortex theory. These contribu-

tions are obtained by directly extending the classical vor-

tex results out the rotor plane to the required location.

The variable part of the vertical induced velocity contribu-

tion due to the lateral _ortices is symmetric with respect

to the vertical plane, as a result its first order variation

in the lateral direction will be zero. In addition, the

lateral vortices do not p::coduce a contribution to the later-

al component of the inducted velocity. Therefore, in this

work only the nonuniform contribution of the longitudinal

vortices is included as fc)llows.

The normalized nonuniform vertical induced velocity dis-

tribution along the later_l axis at the position of horizon-

tal tail in forward flig1_t with zero sideslip angle at an

advance ratio of 0.22 (10C KTS) for UH-60A is shown in Fig.

3-1. The antisymmetric pazt produces a steady rolling moment

and a pitch moment variation with the sideslip angle. The

symmetric part produces _ steady pitch moment and a roll

moment variation with the sideslip angle.

The shape of the distribution explains the phenomena

observed in the wind tunnel test of Ref.23: (1)the left hand
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panel encounters relative positive rotor induced angles and

the right hand panel enco1_nters negative values, (2)the yaw-

pitch coupling is general_Jy worse for a nose left slip than

for a nose right slip, (31_the right hand panel produces con-

siderably more coupling tlan the left hand panel when tested

separately.

The vertical variatior of the lateral component of the

induced velocity at the tail rotor in the zero sideslip case

for the same helicopter at the same flight condition at

advance ratio of 0.22 is shown in Fig. 3-2. As a conse-

quence the local angle of attack of the tail rotor and ver-

tical tail will vary with the angle of attack of the heli-

copter, producing roll and yaw moments. It can be seen that

there is a discontinuity 3n the wake, which is due to the

inviscid fluid assumption in the theory and is smoothed out

by taking the viscosity of the airflow into account.

Because the real distributLon is unknown and nonlinear, and

the assumption of tail rotor center located on the surface

of the wake is extremely poor for most flight conditions,

the corresponding derivati,,es are determined by correlation

with flight test. The d_rivatives used in this paper are

determined in one trim coI_dition at advance ratio of 0.14

(60 KTS). It has been found that the response prediction is

not sensitive to the value of these derivatives, however the

overall effect is important..
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Although the effects of nonuniform induced velocity are

strong nonlinear functions of the sideslip and angle of

attack, only the steady contribution and first order varia-

tion of these effects are included. For example, the overall

roll and pitch moment contributions by horizontal tail as

functions of the sideslip angle and their linear approxima-

tions are given in Figs. 3-3 and 3-4 for the helicopter at

the same flight condition as the induced velocities. As can

be seen, these nonlinear effects behave like linear effects

only in a small neighbor]_ood about the equilibrium point.

Therefore, the model is _iimited to the case of small sides-

lip motion.
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Chapter IV

VERIFICATION OF THE MODEL

4.1 Introduction

To correlate the model, the transient response of an

articulated rotor helicopter to small step-inputs of each

control at various trim co_iditions has been calculated and

compared with a large nonli_Lnear model currently used in a

simulator and with flight test data. The flight test

results are obtained by a flight test program solely for the

purpose of validating mathematical models of the helicopter.

The helicopter is a UH-60A Black Hawk, which has a fully

articulated rotor having fo_ir blades with lead-lag dampers.

The helicopter configurati:_n, structural and aerodynamic

properties are given in Ref.10. The trim conditions are

hover, 60 KTS level flight, I00 KTS level flight, and 140

KTS level flight. The time histories of the control inputs,

the test conditions, and the transient responses obtained

from flight test and the simulation are presented in Ref.18.

The trim values and the initial control settings used in

the simulation are directly obtained from flight test data.

After trimming to the test conditions, the time-histories of

the perturbed input, which are the differences between the

time-histories of test-aircraft control and its initial con-
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trol positions, were used as direct input to the simulation.

In this way, the simulation begins each transient response

in the actual trim conditiDn; therefore, the trim errors

have a minimal influence Dn dynamic response comparisons.

All simulation performed in this work used a time step of

0.05 sec. The simulation oltput was recorded every 0.15 sec

to reduce the cost of plotting.

The calculated response time-histories are compared to

flight test data for small control inputs in Figs. 4-1 to

4-27. Correlations are discussed in terms of the fuselage

angular rate response since their quantities are of primary

interest in handling qualities. Calculated results from

models both with and without dynamic inflow are presented in

hover so as to illustrate the role of dynamic inflow in

response prediction. In forward flight, a third model, the

model including not only dynamic inflow but also the effect

of the rotor wake on the fixed tail surfaces and tail rotor,

is added.

4.2 Hover

Figs. 4-1, 4-2 and 4-3 present the roll, pitch and yaw

rate responses of UH-60A at hover to a 1-inch right cyclic

input, compared to flight test data of Ref.18. The results

obtained from this simulation including dynamic inflow

produce very good agreement with the flight test data, and

also represent an improvement over the nonlinear simulation
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model of Ref.18. For the on-axis response, the addition of

dynamic inflow gives a significant improvement in the agree-

ment between experiment and theory. The roll rate response

to the right cyclic input almost coincides with the flight

test data and reduces the error in the prediction of the

roll rate peak to zero fror, 25_ for the model without dynam-

ic inflow. The nonlinear simulation indicates about 40_

error in this important characteristic[18]. For the off-

axis response, the calculE_ted results are also quite close

to the flight test data, _tlthough dynamic inflow has little

influence on these respon_es. It is of interest _to note

that even though this is an articulated rotor helicopter,

dynamic inflow has a significant influence on the response.

Figs. 4-4, 4-5 and 4-6 present the pitch, roll and yaw

rate responses of UH-60A at hover to 0.5-inch forward cyclic

input. Although for the on-axis response, the model includ-

ing dynamic inflow gives a significant improvement, the

agreement in pitch rate response to the forward cyclic input

is not as good as in the lateral case. This discrepancy

implies that the effective Ditch damping is under-estimated,

tending to indicate that there is a significant additional

source of damping not accolnted for in the theory probably

due to the rotor wake horizontal tail interaction since the

good agreement for the lateral axis shows that the rotor

damping contribution is accLlrately estimated. For the off-

axis response, the calculated results are close to the
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dynamicflight test data, and as for the lateral input,

inflow does not give a significant change.

Figs. 4-7, 4-8 and 4-9 present the responses at hover to

1-inch left pedal input. The initial yaw acceleration is

under-estimated, and the _:oli rate response is close to the

flight test result. The pi:ch rate response is quite differ-

ent from the flight test result, again indicating a rotor-

tail interaction.

For each control input the dynamic inflow has little

effect on the yaw rate re_ponse because the dynamic inflow

is related only to downward inflow components. In addition,

because of pilot difficulty in maintaining trim of the

unaugmented aircraft, in n any cases flight test data drifts

from trim before the control input, causing differences

between the test data and the simulation responses, espe-

cially in the small amplitude off axis responses. This can

be clearly seen in Fig. 4-6, in which the control input

starts at 2.4 seconds; however at that time the yaw rate

response has drifted away a little more than 1 deg./sec,

which is almost equal to the difference between the flight

test and the simulation for the simulation period.

Generally speaking, the agreements obtained for the lat-

eral and directional respo:_ses by including dynamic inflow

are quite satisfactory. However the longitudinal responses

are not so good. The likeky source of this discrepancy is

the interaction of the roto:: wake with the large horizontal
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tail, which is difficult to estimate due to lack of experi-

mental data. Even so, the longitudinal responses calculated

show better agreement than the nonlinear model of Ref.18.

4.3 Forward Flight

Figs. 4-10, 4-11 and 4-3.2 present the pitch, yaw and roll

rate responses of the UH-60A at 60 KTS level flight to

0.5-inch right pedal input. The traces of Fig. 4-11 show

that the yaw rate responseE, the on-axis response, obtained

by the models without dyn_mic inflow and with only dynamic

inflow predict a larger pe_,k yaw rate and a higher damping.

Including the effect of the rotor wake on the tail surfaces

improves the correlation producing excellent agreement. In

Fig. 4-10, the predicted pitch rate responses with and with-

out dynamic inflow depart from the flight test data to the

same degree as the nonlinear simulation. Considerable

improvement in the agreement is obtained by including the

effect of the rotor wake. The improvement arises primarily

from the addition of yaw pitch coupling due to nonuniform

downwash at the horizontal tail. The roll rate response is

shown in Fig. 4-12. The main rotor wake has a significant

effect on the response; hcwever this simulation predicts a

significantly larger roll coupling. The initial roll accel-

eration due

the theory,

response.

to application of rudder is over-estimated by

resulting in a larger amplitude roll rate

In this case, the model including the effect of
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the rotor wake indicates excellent performance by predicting

the yaw-pitch coupling. Dynamic inflow has less effect at

this translational flight condition than in hover.

Figs. 4-13, 4-14 and 4-15 show the roll, pitch and yaw

rate responses to 1-inch left cyclic input. The roll rate

response, the on-axis response in this case, shows very good

agreement for the initial roll rate with some drift away

with time. Note that for the pitch response, the model with-

out dynamic inflow does noel give the right direction for the

response. Adding the dynamic inflow reverses the sign of

the response and includinq the influence of the rotor wake

gives a response very close to the flight test. For the yaw

rate response, although all three are close to the flight

test data, the model including the influence of the rotor

wake shows no improvement over others. However, the shape

of these traces suggests that trim drift may be present in

the flight test as mentioned earlier. Therefore, generally

speaking, the correlation between theory and experiment

including the influence of the rotor wake still is much bet-

ter in this case; it not only gives a correct pitch rate

response by taking the yaw pitch coupling into account, but

also gives a improvement in roll rate correlation.

Figs. 4-16, 4-17 and 4-18 show the angular rate responses

at I00 KTS level flight to 1-inch forward cyclic input. Once

again the pitch rate responses, the on-axis response,

obtained by the models with and without dynamic inflow drift
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The effect of dynamic

airspeed. Considerably

is obtained by including

the effect of the rotor wake. It has a similar shape to the

flight test data, which has two peaks instead of one. For

the yaw rate response, the model including the influence of

the rotor wake presents a better shape but still an over-

shoot, which is believed due to the lack of the dynamic

inflow modelling for the tail rotor. The overshoot of yaw

rate response, through the yaw roll coupling by the horizon-

tal tail caused by the nonuniform downwash, results in a

small wrong positive roll rate response. Even so, it is

still reasonable to say thaZ the model including the effect

of the rotor wake is better because it can predict the sec-

ond peak in the primary response.

Figs. 4-19, 4-20 and 4-21 present responses of UH-60A at

I00 KTS level flight to 1-inch right pedal input. The

traces of Fig. 4-20 show that for the yaw rate response, the

on-axis response, the models without the effect of the main

rotor wake show poor agreement after the first peak. After

3.5 seconds, both of the responses drift away from the

flight test data, there is an error in dominant frequency.

Including the influence of the rotor wake gives a much bet-

ter agreement with flight test data for the 6 second test

period. In Fig. 4-19, once again the pitch rate response

which shows best agreement to the flight test data comes
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Fig. 4-19 Comparison of Calculated Responses and Flight-Test Data

(Pitch Rate Response to l-..in Right Pedal Input, I00 KTS)
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from the model including the effect of the rotor wake on the

tails and tail rotor. The same improvement also can be seen

at Fig. 4-21 for the roll rate response, but again as in the

60 KTS case the initial roll acceleration due to pedal input

is over-estimated by about a factor of two. A similar dis-

crepancy appears in the nonlinear simulation model of

Ref.18.

Figs. 4-22, 4-23 and 4-24 show the responses of UH-60A at

140 KTS level flight to 1-inch lateral cyclic input. In this

case, the responses obtained by all three models show very

good agreement with the flight test data, the model_includ-

ing the influence of the rotor wake produces only a little

improvement in long term trends.

Figs. 4-25, 4-26 and 4-27 give the responses of UH-60A at

140 KTS level flight to 0.5-inch doublet pedal input. The

traces of Fig. 4-25 sho%' that the yaw rate responses, the

on-axis response, obtained by all models are very close to

the flight test. In this case, the improvement including the

effect of the rotor wake is significant for both yaw and

pitch rate. The roll rate responses are shown in Fig. 4-27,

and again the roll acceleration due

estimated by this model.

It should be pointed out that in these six

flight cases the variations of the sideslip angle

to pedal input is over-

forward

are all

within 15 degrees, and the reason for only one longitudinal

input case being chosen is that the longitudinal inputs usu-
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Fig. 4-25 Comparison of Calculated Responses and Flight-Test Data

(Yaw Rate Response to 0.5-in Pedal Input, 140 KTS)
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ally result in a significant variation of rotor speed, which

is not included in this model.

Generally speaking, the calculated results are close or

very close to the flight test data for all three models used

in the correlation study. The on-axis directional responses

to the pedal input show excellent agreement with flight test

data for all three models, although taking the effect of the

rotor wake on the tail rotor and fixed tails into account is

still beneficial. The longitudinal off-axis response to

pedal input is strongly influenced by the effect of the main

rotor wake on the tail rotor and fixed tails. The models

without the effect of the rotor wake give the similar dis-

crepancies as the nonlinear model used in Ref.18. The model

including the effect of the rotor wake gives significant

improvement and shows excellent agreement with flight test

data, especially at low speed. In general the roll acceler-

ation due to pedal input is over-estimated at all airspeeds.

The agreement is reasonable only in hover but in this case

the yaw acceleration is under-estimated. The reason for this

discrepancy is not clear. A possible source of error could

be the estimation of the inertial characteristics of the

vehicle. The on-axis lateral response and off-axis direc-

tional response to lateral cyclic input show very good

agreement with the flight test data for all of three models.

The model including the effect of rotor wake shows a little

improvement in long term trends. The off-axis longitudinal
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response to lateral cyclic input is also strongly influenced

by the main rotor wake, the model including this effect

works quite well, offering noticeable improvement. As for

the longitudinal input, if there is not much variation in

the main rotor speed, the models show good agreement with

flight test data as well.

The pitch-yaw coupling mentioned in Ref.23 is estimated

by the flat vortex mode3 of the rotor wake at moderate

speeds and at high speeds. The estimate of yaw-roll

coupling is not so obvious because the roll rate responses

due to pedal input are not: satisfactory. In contrast to the

hover cases, the additic;n of dynamic inflow has a small

effect in both moderate speed and high speed flight.

Finally, to illustrate the nonlinear nature of the

coupled rotor/fuselage system and the nonlinear nature of

the influence of the rotor wake on the tail rotor and fixed

tails, transient responses of the helicopter for two moder-

ate 1-inch pedal inputs at I00 KTS are calculated. The var-

iations of sideslip angle in two cases are all 20 degrees.

The yaw rate, pitch rate, and roll rate responses are pre-

sented in Figs. 4-28, 4-29, and 4-30 for the right pedal

input and in Figs. 4-31, 4-32 and 4-33 for the left pedal

input. For both cases, the sideslip angle reached 15 deg.

at the fourth second[18]. Before that time the model includ-

ing the influence of the rotor wake gives very good respon-

ses for all three rates. After that, the yaw-pitch coupling
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Fig. 4-28 Comparison of Calculated Responses and Flight-Test Data

(Yaw Rate Response to 1-in Right Pedal Input, 100 KTS)
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Fig. 4-31 Comparison of Calculated Responses and Flight-Test Data

(Yaw Rate Response to 1-in Left Pedal Input, I00 KTS)
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and the yaw-roll coupling are overestimated as expected.

For the left pedal input, the overestimation mainly happenes

in pitch rate response, and for the right pedal, the roll

rate has the largest overshoot in all three over responses.

Consequently it is concluded that the linearized approxima-

tion to the nonuniform down wash and sidewash at tails is

the sideslip angle variation is larger than

hand, it should be noticed that all three

obtained by the models without considering the

influence of the rotor wake have the same accuracy and simi-

lar shape or trend with the nonlinear dynamic model used in

Ref.18. Therefore, it seems that even under moderate control

inputs, the simulation deficiencies still mainly are results

of insufficient modelling of the rotor/tail interaction, and

have little to do with the small perturbation assumption

under which the system is linearized and the approximation

by replacing the periodic term with its time average.

4.4 Conclusions

From the correlation results given in the last section,

it is clear that the linearized model of helicopter dynamics

developed in this work is a good description for helicopter

free-flight dynamic characteristics in both hover and trans-

lational flight trim conditions. The flight test data con-

firmed the analytic prediczions with excellent accuracy for

small inputs.



v q

v

59

The comparison of the transient responses with flight

test data shows that in hover the effects of dynamic inflow

are significant and can be correctly taken into account by

momentum theory, and that the inclusion of dynamic inflow is

not important as expected in forward flight. The rough

agreement of the transient responses between the models

without considering rotor tail interaction in this work and

the nonlinear simulation _odel used in Ref.18 for small and

moderate control suggested that for the flight dynamical

analysis the coupled rotoz/fuselage system still can be con-

sidered as linear time invariant in a wide range of flight

conditions. The significant improvement obtained by the mod-

el including the influence of the rotor/tail interaction

suggested that for forward flight the sidewash variation at

tail rotor and vertical tail and the nonuniform downwash at

horizontal tail are more important for flight dynamic analy-

sis than the inertia nonlinear coupling, the mechanical non-

linearities associated with moderate elastic deflections,

the servo dynamics, the effects of sweep, the compressibili-

ty, and the nonlinear lag damping, all of them are included

in the nonlinear simulator model. Therefore, the inclusion

of the static influences of the rotor wake on the tail rotor

and fixed tail surfaces are very important and may be the

most important factor for forward flight dynamical analyses

after the basic configuration modelling. It also has been

shown from the comparison that the simple linear flat vortex
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theory employed here is a good description of the phenomenon

and its linearized approximation can be used in a wide range

of flight speed for small control inputs.



Chapter V

INFLUENCEOF THE BLAZIEDYNAMICSON THE FEEDBACK

CONTROLSYSTEMDESIGN

5.1 Introduction

In the design of high-gain control systems for the heli-

copter, it is essential to consider the influences of the

blade dynamics. Although it has been recognized for quite

some time that the flapping dynamics of an articulated rotor

system imposes limitations in the design of automatic con-

trol systems for rotorcraft,

analytical research has been

impact on the

limited number

into account.

design of automatic control

and a significant amount of

performed to investigate their

systems, only a

of studies take the lag degrees of freedom

Furthermore, all investigations to date are

based on incomplete system modelling under assumptions that

yaw motion and vertical motion of the helicopter are uncou-

pled, the fuselage center of gravity is on the shaft, and

the effects of the tail rotor are not included. In Ref.26,

R.T.N.Chen and W.S.Hindson investigated the limitations in

control gain encountered when flapping dynamics are included

and presented experimental verification of these trends. In

Ref.5, H.C.Curtiss investigated the high frequency charac-

teristics of the transfer functions describing the response

- 61 -
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hover.

Due to the
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of helicopters associated with the rotor degrees of freedom

including the lag degrees of freedom and examined the impact

of those on the design of automatic control systems in hov-

er. The results showed that if the simple roll attitude or

roll rate feedback is employed on the helicopter model with

rotor dynamics neglected, uhere is no gain limitation. For

a model including flapping dynamics, there will be limita-

tions for roll rate feedback due to the effect of the feed-

back on the regressing flap mode, and for the roll attitude

feedback due to the effect of the feedback on the advancing

flap mode. When both flapping and lagging dynamics are

included in the model, the maximum allowable gain of the

roll rate feedback is much smaller, and the corresponding

unstable mode is advancing lag instead[5]. This study

extends these results by an analysis on a complete system

model described in Chapter 3 which includes all the low fre-

quency degrees of freedom, the effects of center of gravity

location, the effects of the tail rotor and fixed tail sur-

faces, and the unsteady aerodynamics through dynamic inflow

forward flight trim conditions as well as

multivariable nature of the helicopter sys-

tem, linear optimal regulator theory has also been used to

design stability augmentation systems for helicopters.

Although successful flight control systems[27,28] have been

designed by optimal control procedures based on conventional
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quasi-static stability derivative models. These studies are

limited to helicopters that have relatively high fuselage

inertia and small hinge offset. Therefore the rotor-body

coupling is small. And these designs do not reflect the more

demanding bandwidth requirement for very agile rotorcraft.

Attempts to design a model-following flight control system

for a hingeless rotor helicopter to achieve moderately high

bandwidths have worked well[ in ground-based simulation, but

have been less successf_l in flight[29,30]. Since the

ground-based simulation, which is based on a stability

derivative model, and flight results do not agree, it must

be assumed that better models of such rotor-system dynamics

are required. Several investigators have shown that for the

application of the linear cptimal regulator theory to high-

gain, full-authority controller, the inclusion of the flap-

ping dynamics is essential. In particular, Miyajima has

found that the blade regressing flap mode should be included

in the stability and control augmentation system design[4].

Hall has shown that if an optimal control system devised

based on the quasi-static flapping assumption is applied to

a model with flap dynamics included, instabilities

result[6]. This study extends previous studies by examining

the closed-loop responses of the model including both flap

and lag when the controller design is based on a model which

includes only flapping dynamics, and the closed-loop con-

troller is designed by standard and frequency-shaped per-
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The latter is shown to be very effective

the destabilizing effect of unmodelled

dynamics. It has been found that in addition to rotor dyna-

mics, the sensor dynamics, the actuator dynamics, and the

transport delay associated with the digital implementation

also can severely limit the usable values of feedback

gain[26]. One investigation[31] has found that the simula-

tion of the feedback controller design based on the semi-.

empirical stability deriw!_tive model shows an instability

due to interaction between actuator dynamics and sensor

dynamics. However, these open-loop modes have higher damping

and frequency than the rotor lag

seems more reasonable to include

basic model before examining the

the lag

dynamics. Therefore, it

dynamics in the

destabilizing effects of

the actuator and sensor dynamics. For the requirement of

better modelling, some semi-empirical models are obtained by

numerically adjusting time constants, damping factors, and

natural frequencies in an assumed model structure untill the

frequency response of the model matched flight test data

[32]. This approach may be useful in the design of feedback

control system for a specific aircraft, but it can not pro-

vide the physical insight to the helicopter designer for im-

proving the basic configuration design for next step in the

development. Furthermore, a series of simplified control-

lers are developed through successive reduction in the num-

ber of feedback loops while using the feedback gain factors
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obtained for the optimal control, which makes it possible to

reduce significantly the number of feedback loops required

by optimal control design without any noticable effect on

the overall system dynamical.

All the active control simulations in this study were

performed on a UH-60A Black Hawk helicopter. All the

results use the complete model which includes the dynamic

inflow at hover and both ¢[ynamic inflow and the influences

of rotor wake on the tail rotor and empennage at forward

flight unless noted.

5.2 Simple Feedback Control

Although a variety of output variables are possible

sources of closed loop feedback information for control

actuation, the rotation attitude and rotation rate variables

have been considered to be highly effective for stabilizing

helicopters by some investigations [33,34], and are most

frequently used in practice. Therefore, both have been cho-

sen as feedback variables.

In this section, the influences of rotor dynamics and

dynamic inflow have been studied by examining the root loci

and the closed loop frequency response

the system with simple state feedback.

eigenvector analysis has been used to

insight.

characteristics of

The eigenvalue and

promote physical
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5.2.1 Attitude feedback at hover

Fig. 5-1 shows the eigenvalues of the helicopter at hov-

er, their numerical values are listed in Table 5-1. It can

been seen that the regressing flap mode, roots 17 and 18,

has moved away from the position directly below the coning

flap, which suggests that it is strongly coupled with the

fuselage modes. Fig. 5-2 shows the eigenvalues associated

with free-flight stability-and-control-characteristics in

detail. According to eigenvector analysis, the left complex

conjugate pair, roots 17 and 18, represents the mode coupled

by regressing flap and body roll motion. The two right com-

plex conjugate pairs near each other, roots 22, 23 and 24,

25, represent modes having coupled pitch and longitudinal

velocity, and coupled ro_l and lateral velocity, the two

so-called longitudinal and lateral phugoid modes. Four zero

roots, roots I, 2, 3, and _!7, are associated with vertical,

lateral, longitudinal and yaw position each. The root 27 is

not exactly zero due to a lack of complete cancellation of

terms, and should be a zero if the equations are derived

explicitly for the coupled system. The smallest negative

real root near zero, root 26, is associated with yaw damp-

ing, and the one next to it, root 21, is associated with the

vertical damping; the left two roots, roots 19 and 20, rep-

resent the modes coupling body pitch and regressing flap.

All of them are coupled t_gether through the canted tail

rotor.
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The root loci of the helicopter with roll attitude feed-

back with in a range from zero to 1.5 Deg/Deg are shown in

Fig. 5-3. The modes shown in the figure are those locations

that are significantly affected by the feedback. Those

include the body roll/regre_sing flap, roll/lateral velocity

and yaw damping. The longitudinal modes, lag modes and con-

ing and advancing flap modes are hardly affected by the

feedback.

Roll attitude feedback stabilizes the roll/lateral veloc-

ity mode very effectively at low gain, and makes it over-

damped at gain K = 0.12. This will improve the helicopter

lateral dynamic character;Lstics because the roll/lateral

velocity mode dominates the low frequency lateral dynamics.

However, the body roll/_l_egressing flap mode is destabi-

lized and finally becomes unstable at feedback gain a little

higher than critical gain }[ = 1.0 Deg/Deg, which has been

predicted to be the theoretical feedback limitation by a

simple model used in Ref.5. This is physically reasonable

because the model here incllud extra damping contributed by

the tail rotor. The roll a%titude feedback destabilizes the

yaw damping mode as well, implying there is a sizeable

coupling between the late:cal and directional dynamics at

hover.

The pole-zero locations of open-loop roll angle to lat-

eral cyclic transfer function at hover were also calculated.

The results are shown in Table 5-1. As can be seen, the
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1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

0 0000E+00

0 0000E+00

0 0000E+00

-0 9427E+01

-0 9427E÷01

-0 1973E+01

-0 1973E+01

-0 8447E+01

-0 8447E+01

-0 2375E+02

-0.2375E+02

-0.1275E+01

-0.1275E÷01

-0.1960E+02

-0.2028E+01

-0.2028E+01

-0 3258E+01

-0 3258E+01

-0 4947E+01

-0 I065E+01

-0 5168E+00

-0 8410E-02

-0 8410E-02

0 5203E-01

0 5203E-01

-0 1380E÷00

0 5839E-06

°

0.

O.

0.

--0.

0.

--0.

O.

-0

0

-0

0

-0

0

0

-0

0

-0

0

0

0

0

-0

0

-0

0

0

O000E+00

0000E'00

O000E-00 -0

5229E_02 -0

5229E-02 0

3974E+02 0

3974E+02 -0

2545E_02 -0

2545E+02 -0

2171E+01 -0

2171E+01 -0

1791E_-02 0

1791E_-02 0

0000E_-O0 -0

7586E_01 -0

7586E_'01 -0

4257E+01 -0

4257E_01 -0

0000E+00 -0

O000E _00 0.

O000E +00 O.

4062E +00 -0.

4062E+00 -0.

2813E+00 0.

2813E+00 -0.

O000E+00 -0.

O000E+O0 O.

3843E+01 0

3843E+01 -0

2413E+01 0

2413E+01 -0

8447E+01 0

8447E+01 -0

2617E+02 0

1960E+02 0

2258E+02 0

1474E+01 0

1474E+01 -0

2011E+01 0

2011E+OI -0.

I149E+02 0.

4905E+01 0.

I026E+01 0

5178E+00 0

6182E-01 0

6182E-01 -0

2112E+00 0

3537E-02 0

1961E-05 0

5199E-I0 0

1342E-12 0

1893E-II 0

I179E÷03

I179E+03

5588E+02

5588E+02

2545E+02

2545E+02

O000E÷00

0000E+00

O000E+00

1739E+02

1739E+02

7574E+01

7574E+01

0000E+O0

0000E÷O0

0000E+00

0000E+00

2928E+00

2928E+00

O000E÷00

O000E÷O0

O000E+00

O000E+00

O000E+O0

0000E+O0

APPROXIMATE TRANSFER FUNCTION :

Roll(s)

AIs(s)

2.057(S+0.O03537)('S+0.2212)

(S+0.138)(S+O.30841+j0.4062)(S+O.OO841-jO.4062)

(S+ii.49)

(S+3.258+j4.257)(S+3.258-j4.257)

TABLE 5-1 Poles, Zeros and Approximate Transfer Function

of Lateral Helicopter Dynamics at Hover



longitudinal low frequency poles have very close

hence will be canceled ir_ the overall transfer
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zeros and

function.

The low-frequency modes remaining after the cancellation

will be the body roll/recTressing flap, the roll/lateral

velocity and the yaw dampirtg. In Table 5-1, a reduced-order

approximate transfer function consisting of the remaining

low-frequency modes is also presented. From the frequency

response of the helicopter roll attitude to the lateral

cyclic input with roll attitude feedback shown in Fig. 5-4,

it can be clearly seen thele are significant improvements by

both reducing the resonanc6 ratio of the system and increas-

ing the bandwidth in the _!,ode amplitude characteristics and

by reducing the phase shi_t in the phase characteristics.

Due to the presence of several nonminimum phase poles and

zeros, the standard interr.retation of gain margin and phase

margin is not valid here, and there is a phase lead at low

frequencies. In addition, the root loci using the approxi-

mate transfer function with same feedback will coincide with

the root loci shown in Fig. 5-3. This implies that the roll

response is primarily determined by the lateral modes of

fuselage and the mode of regressing flap and is coupled with

the mode of directional damping. The cross coupling from

longitudinal dynamics to the roll attitude response is one

order smaller.

The longitudinal root 2oci of the helicopter with pitch

attitude feedback in the same gain range is shown in Fig.
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5-5. The modes shown in the figure are those whose loca-

tions in the complex plane are significantly affected by the

feedback. They include the body pitch/regressing flap, the

pitch/longitudinal velocity and the yaw damping modes. In

addition, the damping ratio of the roll/lateral velocity

mode is also significantly changed by the pitch attitude

feedback, from -0.18 at K=0.0 Deg/Deg to 0.0132 at K=I.5

Deg/Deg, although this variation of the damping is too small

to be shown in the root loci map. The pitch attitude feed-

back stabilizes the longitudinal oscillatory mode at gain

K<0.15 Deg/Deg; destabilizes it thereafter; makes it unsta-

ble about K=I.4 Deg/Deg; and increases the oscillatory fre-

quency quite rapidly. The flapping velocity component in

the corresponding eigenvector is increased rapidly with the

feedback, suggesting that the feedback limitation physically

results from the coupling with the flapping dynamics. The

pitch attitude feedback de:reases the damping of the right

body pitch/regressing flap mode and increases the damping of

the left one.

The pole-zero locations of open-loop pitch angle to

longitudinal cyclic transfer function at hover are presented

in Table 5-2. For this case, only the vertical damping and

regressing lag have a very close zero, hence will be can-

celed in the overall transfer function. Therefore the sim-

plified transfer function, presented in the table, is much

more involved. This implies that the pitch response of the
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POLES

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

0

0

0

-0

-0

-0

-0

-0

-0

--0.

--0.

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

-0

0

0

-0

0

0000E+00

0000E+00

0000E+00

9427E+01

9427E÷01

1973E+01

1973E+01

8447E+01

8447E+01

2375E+02

2375E+02

1275E+01

1275E+01

1960E+02

2028E+01

2028E+01

3258E÷01

3258E+01

4947E+01

I065E+01

5168E+00

8410E-02

8410E-02

5203E-01

5203E-01

1380E+00

5839E-06

0.0000E+00

0.0000E+00

0.000OE+00

0.5229E+02

-0.5229E+02

0.3974E+02

-0.3974E+02

0 2545E+02

-0 2545E+02

0 2171E+01

-0 2171E+01

0 1791E+02

-0 1791E+02

0 O000E+O0

0 7586E+01

-0 7586E+01

0 4257E+01

-0 4257E+01

0 O000E+O0

0 O000E+O0

0 O0001!:+O0

0 4062E+00

-0 4062E+00

0.2813E+00

-0.2813E÷00

O.O000E+O0

O.O000E+O0

APPROXIMATE TRANSFER FUNCTION :

ZEROS

-0.9378E+00

-0.9378E+00

0.1431E+01

0.1431E+01

-0.8453E+01

-0.8453E+01

-0.2609E+02

-0.2254E+02

-0.1960E+02

0 1485E+01

0 1485E+01

-0 I148E+02

-0 2025E+01

-0 2025E+01

-0 I189E+01

-0 I189E+01

-0 3728E+01

-0 5275E+00

-0 2315E+00

-0 3231E-01

-0.2872E-02

0.9957E-06

-0.4581E-I0

0.2050E-II

-0.2433E-II

0.1239E+03

-0.1239E+03

0.5591E+02

-0.5591E+02

0.2543E+02

-0.2543E+02

0.0000E+00

O.O000E+O0

0.O000E+O0

0.1694E+02

-0 1694E÷02

0 0000E÷O0

0 7593E+01

-0 7593E+01

0 4844E+01

-0 4844E+01

0 O000E÷00

0 O000E÷O0

0 O000E÷O0

0 0000E÷O0

0 0000E+00

0 0000E+O0

0 O000E+O0

0 O000E+O0

0 O000E÷O0

Pitch(s)

BIs(s)

-0.2954(S÷0.002872)

(S-O.052C'3+j0.2813)(S-O.05203-jO.2813)

(S+0.03231)(S+0.2315)(S+3.728)

(S+0.00841-jO.4062)(S+0.00841+j0.4062)(S+0.138)(S+I.065)

(S+I.189-j4.644)(S+I.189+j4.844)

(S+3.258-j4.257)(S+3.258+j4.257)(S+4.947)

TABLE 5-2 Poles, Zeros and Approximate Transfer Function

of Longitudin_Jl Helicopter Dynamics at Hover
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a key figure for the longitudinal

coupled with the lateral and direc-

As same as roll attitude feedback control, the yaw damp-

ing mode is destabilized s:_gnificantly by the pitch attitude

feedback.

5.2.2 Attitude feedback :_n forward flight

Fig. 5-6 shows the eigenvalues associated with free

flight stability and control characteristics of the helicop-

ter for forward flight at 60 KTS and I00 KTS; their numeri-

cal values are listed in Tables 5-3 and 5-4. According to

eigenvector analysis, the left complex conjugate pair, roots

17 and 18, represent the mode coupled by regressing flap and

body roll. The complex conjugate pair in the middle, roots

22 and 23, as well as the left real mode, root 19, repre-

sent a short period mode which involves primarily pitch

angle and angle of attack and is strongly coupled with the

regressing flap. The right complex conjugate pair, roots 20

and 21, represent the dutch roll mode which involves prima-

rily the yaw degree of freedom with a number of small trans-

lation velocities; another complex conjugate pair very near

zero, roots 24 and 25, is the spiral coupled with an unreal-

istic yaw mode due to the remainded error mentioned in the

introduction about the disadvantage of the matrix displace-

ment method. This mode is the one that is somewhat inaccu-

rate due to a lack of complete cancellation of terms, and
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i

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

POLES

0.0000E÷00

0.0000E+O0

0.0000E+00

-0.9359E+01

-0 9359E+01

-0 2012E+01

-0 2012E+01

-0 8313E+01

-0 8313E+01

-0 2428E+02

-0 2428E+02

-0 I177E+01

-0.I177E+01

-0 1949E+02

-0 2092E+01

-0 2092E+01

-0 4444E+01

-0 4444E+01

-0 3830E+01

-0 2137E+00

-0 2137E÷00

-0 9324E+00

-0 9324E+00

0 1490E-01

0 1490E-01

0 2209E+00

-0 3006E+00

0.O000E÷00

O.0000E+00

0.0000E+00

0.5207E+02

-0.5207E+02

0.3954E+02

-0.3954E+02

0.2503E+02

-0.2503E+02

0.7011E+01

-0.7011E+01

0.1774E+02

-0 1774E+02

0 0000_i+00

0 7671_i+01

-0 7671_]+0i

0 3883[+01

-0 3883_+01

0 0000[+00

0 1254[i+0!

-0 1254[i+01

0.109311+01

-0.109311+01

0.5367E-01

-0.5367E-01

O.O000E+O0

O.O000E+O0

APPROXIMATE TRANSFER FUNCTION

ZEROS

-0.5844E+02

-0 5844E+02

0 7133E+01

0 7133E+01

-0 5050E+02

-0 8648E+01

-0 8648E+01

0 1648E+01

0 1648E+01

-0 2276E+02

-0.1571E+02

-0 1571E+02

-0 1919E+01

-0 1919E+01

-0 3892E+01

-0 8986E+00

-0 8986E+00

-0.2731E+00

-0.2731E+00

-0.2916E+00

0.2168E+00

0.2771E-03

0.2678E-09

0.1802E-12

-0.2330E-12

0.9794E+02

-0.9794E+02

0.5395E+02

-0.5395E+02

0.O000E+00

0.2530E+02

-0.2530E+02

0.1876E+02

-0.1876E+02

0.O000E+00

0.7746E+01

-0.7746E+01

0 7638E+01

-0 7638E+01

0 O000E÷O0

0 I125E÷01

-0 I125E+01

0 III8E+OI

-0 III8E+01

0 O000E+O0

0 0000E+O0

0 0000E+00

O.O000E+O0

O.O000E÷O0

O.O000E+00

Roll(s)

AIs(s)

1.052

(S-0.0149+j0.O5367)(Si0.0149-jO.05367)

(S-O. 0002771)

(S+4.44-j3.88)(S+4.44-j3.88)

TABLE 5-3 Poles, Zeros and Approximate Transfer Function

of Lateral Helicopter Dynamics at 60KTS



OF POORQUALITY 8O

POLES ZEROS

1
2
3
4
5
6
7
8
9
I0
ii
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

O.O000E+O0
0 O000E+O0
0 O000E+O0

-0 902SE+01
-0 9025E+01
-0 2083E+01
-0 2083E+01
-0 3312E+02
-0 3312E+02
-0 7759E+OI
-0 7759E+01
-0 2418E+02
-0 I167E+0!
-0 I167E+01
-0 2269E+01
-0 2269E+01
-0 5138E+01
-0 5138E+01
-0 4890E+01
-0 3618E+00
-0 3618E+00
-0 I146E+01
-0 I146E+01
0 I137E-01
0 I137E-01
0 1528E+00

-0 9152E-01

O.O000E+O0
0 O000E+O0
0 O000E+O0
0 5194E+02

-0 5194E+02
0 3897E+02

-0 3897E+02
0 1683E+02

-0 1683E+02
0 2517E+02

-0 2517E+02
O.O000E+O0
0.1738E+02

-0 1738E+02
0 7914E+01

-0 7914E+01
0 4588E+01

-0 4588E+01
0 O000E+O0
0 1440E+01

-0 1440E+01
0 1503E+01

-0 IBO3E+OI
0 4161E-01

-0 4161E-01
0 O000E+O0
0 O000E+O0

APPROXIMATETRANSFERFUNCTION :

-0.2156E+03
-0.2047E+02
-0.2047E+02
-0.2612E+01
-0.2612E+01
-0.8965E+01
-0.8965E+01
-0.2221E+02
-0.2221E+02
-0 2660E+02

0 I175E+01
0 I175E+01

-0 2016E+01
-0 2016E+01
-0 4889E+01
-0 I146E+01
-0 I146E+01
-0 3910E+00
-0 3910E+00
0 1449E+00

-0 8595E-01
0 II16E-02
0 8511E-II

-0 1040E-IO
-0 8388E-12

O.0000E+O0
0.7327E+02

-0.7327E+02
0.5333E+02

-0.5333E+02
0.2499E+02

-0.2499E+02
0 1608E+02

-0 1608E+02
0 0000E+00
0 1937E+02

-0 1937E+02
0 7886E+01

-0 7886E+01
0 0000E+O0
0 1526E+01

-0 1526E+01
0 1312E+01

-0 1312E+01
0 0000E+00
O.0000E+00
0.0000E+O0
0.0000E+00
O.O000E+00
0.O000E+O0

Roll(s)

AIs(s)

TABLE 5-4

0.7014

(S-0.OII37+j0.04161)(S-O.01137-j0.04161)

(S-0.001116)

(S+5.138-j4.588)(S+5.138-j4.588)

Poles, Zeros and Approximate Transfer Function

of Lateral Helicopter Dynamics at IOOKTS
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should be a zero and a real root if the equations are

derived explicitly for the coupled system. Three zero roots,

roots I, 2, and 3, are associated with vertical, lateral,

longitudinal position each; the two real roots at right rep-

resent the phugoid mode coupled with lateral damping due to

the canted tail rotor.

The root loci of the helicopter dynamics with roll atti-

tude feedback for a gain range from zero to 1.5 Deg/Deg for

60 KTS and I00 KTS forward flight are shown in Fig. 5-7 and

Fig. 5-8. The modes shown in the figures are those signifi-

cantly affected by the feedback, including the body roll/

regressing flap, dutch roll and spiral. It is shown that

the roll attitude feedback stabilizes the spiral mode very

effectively but has very little effect on the dutch roll.

The stabilization of the spiral mode improves the low fre-

quency characteristics of the helicopter's lateral dynamics.

As can be clearly seen from the frequency responses present-

ed in Figs. 5-9 and 5-10, the feedback reduces the resonance

ratio of the system, increases the bandwidth in the Bode

amplitude characteristics and reduces the phase shift in the

phase characteristics. It should be noticed that the spiral

mode is unstable without the feedback. The low frequency

response peak shown in the Bode plot is only a measurement

about how close to the imaginary axis of the pole, instead

of the classical magnitude of steady-state response for a

sinusoidal input. This means that the improvement obtained
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larger than it seems to beby the roll attitude feedb_ck is

in the frequency responses_

The same as at hover, the roll damping/regressing flap

mode is destabilized and finally becomes unstable at feed-

back gain a little higher than K=I.0 Deg/Deg.

The pole-zero location_ of open-loop roll angle to lat-

eral cyclic transfer function at 60KTS and 100KTS are pre-

sented in Tables 5-3 and 5-4. The same as at hover, most

nonlateral low frequency poles have a very close zero,

therefore will be canceled in the overall transfer function.

Furthermore, even the dutc_ roll mode, which traditionly is

strongly coupled with the lateral dynamics, has a close zero

pair, this explains why the roll attitude feedback hardly

affects it's position. T_erefore it is suggested that for

this helicopter, the low frequency roll response to the lat-

eral cyclic input at forw6rd flight is only determined by

the roll damping/regressirg flap and spiral modes. The

reduced order approximate transfer functions are also pre-

sented in Tables 5-3 and 5-4. Also, the root loci of the

simplified transfer function with same feedback will have

same shapes with those shcwn in Figs. 5-7 and 5-8. This

shows that low frequency l_teral dynamics of the helicopter

at forward flight is well separated from the longitudinal

and directional dynamics but coupled with the flapping

dynamics.
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Fig. 5-11 The Root Loci of The Helicopter With Pitch Attitude
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The longitudinal root loci of the helicopter with pitch

attitude feedback in the same gain range is shown in Fig.

5-11 and Fig. 5-12. The modes which are significantly

affected by the feedback are those traditional longitudinal

modes, phugoid and short period.

real roots, one divergent; and

coupled with the regressin_ flap.

The phugoid mode is two

the short period mode is

The less damped spiral

mode which has coupled with longitudinal velocity is also

affected although it's numerical variation is too small to

be shown in the figures. The pitch attitude feedback stabi-

lizes the phugoid mode as well as the real root of short

period mode but destabilize_ the complex pair. The spiral

mode is also destabilized _t low gain range and is stabi-

lized after the gain K=0.4 [or 60KTS and K=O.II for 100KTS.

The final feedback limitatLon gain due to the destabilized

short period mode is increa3ed with forward flight velocity

because the stable effect of the horizontal tail on the

longitudinal dynamics is increased with flight velocity.

The pole-zero location_ of open-loop pitch angle to

longitudinal cyclic transf_r function at 60KTS and 100KTS

are presented in Tables 5-5 and 5-6. There is only one

pole-zero close pair, which is associate with regressing lag

mode, in the overall transfer function. Hence the simpli-

fied transfer function pre:_ented in the table is much more

involved. As at hover, it is implied that the pitch

response of the helicopter which is a key figure for the
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1 0
2 0
3 0
4 -0
5 -0
6 -0
7 -0
8 -0
9 -0.
I0 -0.
II -0
12 -0
13 -0
14 -0
15 -0
16 -0
17 -0
18 -0
19 -0
20 -0
21 -0
22 -0
23 -0
24 O.

25 O.

26 O.

27 -0.

POLES

O000E+O0 0.0000_+00

O000E+O0 0.0000_+00

O000E+O0 O.O000i_+O0

9359E+01 0.5207]_+02

9359E+01 -0.5207]_+02

2012E+01 0.3954]_+02

2012E+01 -0.39541!_+02

8313E+01 0.2503]i_+02

8313E+01 -0 2503}C+02

2428E+02 0 7011]i_+01

2428E+02 -0 701115+01

I177E+01 0 1774_+02

I177E+01 -0 1774!_+02

1949E+02 0 0000}]÷00

2092E+01 0 76711_+01

2092E+01 -0 76711_+01

4444E+01 0 3883}_+01

4444E+0i -0 38831]+01

3830E+01 0 0000}il+00

2137E+00 0 12541!_+01

2137E+00 -0 1254}<+01

9324E+00 0.I0931_i+01

9324E+00 -0.I093}_Z+01

1490E-01 0.5367_i-01

1490E-01 -0.5367}i-01

2209E+00 0.0000_i+00

3006E+00 0.0000_+00

ZEROS

-0.2293E+03

0.I055E+03

-0.1500E+OI

-0.1500E+OI

-0.5593E+02

-0.5681E+01

-0.5681E+01

0.5003E+00

0 5003E+00

-0 1596E+02

-0 1596E+02

-0 2118E+01

-0 2118E+01

-0 6366E+01

-0 6366E+01

-0 1676E+01

-0 1676E+01

-0 3050E+00

-0 3050E+00

-0 6778E+00

0 1721E-I0

-0.2397E-02

-0.2378E-01

0.5138E-II

0.1640E-13

0.0000E+00

0.0000E+00

0.5544E+02

-0.5544E+02

0.0000E+O0

0.2826E+02

-0.2826E+02

0 1814E+02

-0 1814E+02

0 2315E+01

-0 2315E+01

0 7736E+01

-0 7736E+01

0 I082E+01

-0 I082E+01

0 4423E+01

-0 4423E+01

0 III8E+OI

-0 III8E+OI

0 O000E+O0

0 0000E+O0

O.0000E+O0

O.O000E+O0

O.O000E+00

0.0000E+00

APPROXIMATE TRANSFER FUNCTION :

Pitch(s) 0.I16(S-0.01721)(S+0.002397)(S+0.6778)

Bls(s) (S-0.0149+jO.C5367)(S-0.OI49-jO.05367)(S-0.2209)

(S+0.305+jI.II8)(S+0.305-jI.IIS)(S+I.676-j4.423)

(S+0.9324-jl.093)(S+0.9324+jl.093)(S+0.2137+jl.254)

(S+I.676+j4.423)(S+6.366+jl.082)(S+6.366-jI.082)

(S+0.2137-jl.254)(S+4.444-j3.883)(S+4.444+j3.883)(S+3.83)

TABLE 5-5 Poles, Zeros and Approximate Transfer Function

of Longitudinal Helicopter Dynamics at 60KTS
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1 0

2 0

3 0

4 -0

5 -0

6 -0

7 -0

8 -0

9 -0

I0 -0

II -0

12 -0

13 -0

14 -0

15 -0

16 -0

17 -0

18 -0

19 -0

20 -0

21 -0

22 -0

23 -0

24 0

25 O

26 0

27 -0

POLES

O000E+O0 0

O000E+O0 0

O000E+O0 0

9025E+01 0

9025E+01 -0

2083E+01 0

2083E+01 -0

3312E+02 0

3312E+02 -0

7759E+01 0

7759E+01 -0

2418E+02 0

I167E+01 0

I167E+01 -0

2269E+01 0

2269E+01 -0

5138E+01 0

5138E+01 -0

4890E+01 0

3618E+00 0

3618E+00 -0

I146E+01 0

I146E+01 -0

I137E-01 0

I137E-0! -0

1528E+00 0

9152E-01 0

0000E _00

O000E _00

O000E _00 -0

5194E _02 -0

5194E _02 -0

3897E _02 -0

3897E _02 0

1683E _02 -0

1683E _02 -0

2517E _02 -O

2517E _02 -0

O000E _00 -0

1738E _02 -0

1738E _02 -0

7914E _01 -0

7914E _01 -0

4588E _O1 -0

4588E _01 -0

0000E _00 -0

1440E _01 -0

1440E _01 -0

1503E _01 -0

1503E_01 -0

4161E-01 -0

4161E "01 -0

0000E _00 0

0000E_00 0

ZEROS

2013E+03

8070E+02

4372E÷01

4372E+01

3553E+02

2014E+O1

2014E+01

1983E+02

1983E+02

5780E+00

5780E+00

2321E+01

2321E+01

9728E+01

8057E+01

1563E+01

1563E+01

3449E+00

3449E+00

9088E+00

1261E-01

I152E-09

I158E-02

2535E-II

4516E-12

O.O000E+O0

O.O000E+O0

0.5287E+02

-0.5287E÷02

O.0000E+00

0.3259E+02

-0.3259E+02

0.6674E+01

-0.6674E+01

0 1764E+02

-0 1764E+02

0 8041E+01

-0 8041E+01

0 O000E+O0

0 O000E+O0

0 4835E+01

-0 4835E+01

0 1338E+01

-0 1338E+01

0 O000E÷O0

0 0000E+O0

0 O000E+O0

0 O000E+O0

0 0000E+OO

O O000E+O0

APPROXIMATE TRANSFER FUNCFION :

Pitch(s) 0.3924(S+3.001261)(S+0.01261)

Bls(s) (S-O.OII37+jO.O4161)(S-O.OII37-jO.04161)

(S+0.9088)(S+0.34%9-jl.338)(S+O.3449+jl.338)

(S+0.09152)(S+0.3618+jl.44)(S+O.3618-jl.44)(S+l.146+jl.503)

(S+I.563-j4.835)(S+I.563+j4.835)(S+8.057)(S+9.728)

(S+I.146+jl.503)(S+4.89)(S+5.138-j4.588)(S+5.138+j4.588)

TABLE 5-6 Poles, Zeros and Approximate Transfer Function

of Longitudinal Helicopter Dynamics at IOOKTS
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longitudinal dynamics, is strongly coupled with the lateral

and directional dynamics.

5.2.3 Pitch Rate feedbac]:

The longitudinal root ]oci of the helicopter with pitch

rate feedback in a gain ral_ge from zero to 1.5 Deg/(Deg/Sec)

are shown in Figs. 5-13, 5-14 and 5-15 for the hover, 60KTS

and 100KTS forward flight _espectively.

At hover the pitch rate feedback increases the damping

ratio of the long perioc_ mode very effectively by both

increasing the damping and reducing the frequency, and sta-

bilized the unstable mode _t gain K=0.5 Deg/(Deg/Sec). In

contrast to the attitude f_edback, the pitch rate feedback

moves the two coupled body pitch/regressing flap real roots

closing to each other ant becoming a complex pair at the

gain K=0.18 and finally ccupling with the lateral coupled

body roll/regressing flap rode, making it more stable. This

means that at low gain rarge, the feedback stabilized the

dominant less stable one cf the two body pitch/regressing

flap modes. Furthermore, the feedback slightly stabilizes

the yaw damping mode as well, although the effect is too

small to be shown in the root loci. All of these make the

pitch rate feedback more keneficial than the corresponding

pitch attitude feedback.

For forward flight, t_e pitch rate feedback offers the

same beneficial improvements. The feedback not only increas-

es the damping of the unstable long period mode but also
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Fig. 5-15 The Root Loci of The Helicopter With Pitch Rate
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increases the damping of _he oscillatory short period mode,

both of them are dominant modes in the long period response

and the short period re_ponse respectively, although it

decreases the damping of t_he stable long period mode and the

real root of short period mode.

The feedback limitation for pitch rate feedback comes

from the destabilized laci[ motion. The advancing lag mode

becomes unstable at feedb_!_ck gain about K=I.5 Deg/(Deg/Sec)

for hover. The effect on the damping of the advanced lag

with the pitch rate feec_ack gain for hover and forward

flight are shown in Fig. 5-16. As can be seen, the limita-

tion is relaxed significa1_tly at forward flight.

5.2.4 Roll Rate feedbach

So far all of the feedback gain limitations encounted by

the rotor/fuselage coupli_Lg are quite high compared to those

conventionally used in tle rotorcraft. However, the gain

limitations in roll rate Jeedback are far lower. At hover

the advancing lag mode becomes unstable.with a feedback gain

0.23 Deg/(Deg/Sec), in iorward flight the coning lag mode

becomes unstable at about the same feedback gain at I00 KTS.

Figs. 5-17 and 5-18 present the effect of the roll rate

feedback on the dampings of the advancing lag mode and the

coning lag mode. As can be seen, although the destabilized

mode changes from advancing lag at hover to the coning lag

at high speed, the limitation in feedback gain which will

destabilize the rotor/fu_elage system does not change sig-
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nificantly. Therefore, the roll rate feedback has

used with caution in the _hole flight speed range.

The precise value of the limiting gain is of course sen-

sitive to the estimation cf the mechanical lag damper char-

acteristics. The effect of the estimated mechanical damping

on the advancing lag damping is shown in Fig. 5-19 for roll

rate feedback near the stalDility boundary of the helicopter

at hover. The increase of the mechanical damping will

result in a increase in the allowable rate gain before

instability is encounted. Therefore, for the nonlinear dam-

per whose estimated dampi_g increases with the oscillatory

velocity, the slightly un!3table mode only means a moderate

oscillation limit cycle.

Unfortunately the roll rate feedback is very beneficial

for the helicopter lateral, dynamics. At hover the roll/

lateral velocity mode and body roll/regressing flap mode are

stabilized by the feedback this can not be done simultane-

ously by the attitude feedback. In forward flight, the body

roll/regressing flap mode, which is unstable for the high

gain roll attitude feedbac]:_, and dutch roll mode, which can

not be stabilized by the 2oll attitude feedback, are both

stabilized by the feedback. The spiral mode, which can be

effectively stabilized by the roll attitude feedback, is

affected very little by the roll rate

quency response of the hel_copter roll

lateral cyclic input with roll rate

95

to be

feedback. The fre-

rate at hover to the

feedback is shown in
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Fig. 5-20. As can be seen, the roll rate feedback increases

the bandwidth of the rate command system by both moving the

low frequency response peak, which associated with lateral

phugoid mode, to lower frequency and increasing magnitude of

the rate response at high frequencies. This will signifi-

cantly improve the ablit:y of the helicopter for the

manoeuvre requirement. The corresponding phase characteris-

tics also have the same extension. The frequency response

of the helicopter roll rate for forward flight to the later-

al cyclic input with roll rate feedback is shown in Figs.

5-21 and 5-22. Although the peak to be smoothed is small

itself, the roll rate feedback makes the improvement in the

high frequency range, which is the most important for the

manoeuvre capability.

5.2.5 Summary

For the simple feedback control,

severely limit the useable values of

especially for the roll rate feedback.

tude gain limitations arise primarily

the blade dynamics can

the feedback gains,

The fuselage atti-

from the stability

limits associated with the coupled body-flap modes, the

fuselage rate gain limitations arise primarily from the sta-

bility limits associated with the lag modes. It should be

noted that rate feedback always stabilizes those fuselage/

flap modes which produce the limitations in the attitude

feedback. The proper combination with rate feedback will

hence increase the attitude feedback limitation, which is
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already quite high. Therefore the limitation on the atti-

tude feedback should be not a real problem for the automatic

control design. However, the effect of attitude feedback on

the lag modes is very small, although it is stabilizing.

Therefore the limitations on the rate feedback can not be

relaxed by addition of attitude feedback. Consequently it

can be concluded that rec_ucing the destabilizing effect of

the feedback control on the lag dynamics will be required to

raise the feedback gain limitations.

For the low frequency longitudinal dynamics, the

improvement obtained by the pitch attitude and/or pitch rate

feedback is limited because of the coupling with the lateral

dynamics. It seems that good lateral dynamics, especially a

stable spiral mode, is essential to achieve satisfactory

longitudinal dynamics. _he gain limitations due to the

blade dynamics are not critical for their relative high val-

ues. For the lateral dynamics, in contrast, the simple roll

attitude or roll rate feedback offers a significant improve-

ment to the lateral dynamics. The proper combination of both

can give perfect lateral dynamical characteristics.

5.3 Multivariable Optimal Control

Active control considered in this section is based on the

deterministic linear optimal regulator problem[35,36]. The

purpose of the present study is to show the effect of the

lag dynamics on the overal_ system controller design. For
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the sake of clarity, it s assumed that all of the states,

including the dynamic inf ow, are available for measurement.

Optimal control theor _, is applied to the linear, con-

stant coefficient differ,_ntial written in first

order form

Eq.(8)

X' = A X + I_ U

Y = C X

The objective is now to find controls U,

cyclic control inputs to the swashplate and

control input to the tail rotor, which will

quadratic cost function.

_O ,T-
j = _ Q Y _ t_T;: U dt (II)

where the weightlng m;_tlices Q and R are assumed to be

symmetric and positive definite. The solution is the deter-

ministic optimal controli el- with linear feedback of all

state variables.

U = K X (12)

where

(9)

(I0)

that is the

the collective

minimize the

K = - _-IBTS _ (13)

and the matrix S is t]_e constant, symmetric, positive

definite solution of the algebraic Riccati equation.

SA • ATs - SBR-IBTS - CTQC _O (14)

The closed loop dynamic:s equation is then defined as

X' := (A+BK) X (15)

For the multivariable optimal control, the choice of a

performance index, rather than feedback gains, to obtain the
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desired response is the _:entral feature of the method. The

solution of the optimal regulator problem is well defined,

if the equations for a complex multi-input, multi-output

plant is in hand. The p:incipal difficulty lies not in the

solution but in the choi(e of a suitable performance index.

The solution is optimal in the sense that the chosen per-

formance index is minimi=ed, but different optimal solutions

can be obtained by alter:ng the Q and R matrices. The per-

formance index may be interpreted as a quantitative measure

of the system performance. The R matrix penalizes the con-

trol input required. T_e Q matrix penalizes the error in

maintaining a desired tr_jectory.

A system model which includes only flapping dynamics is

obtained from the systen model developed in Chapter 3 by

simply letting the pertLrbation variables associated with

lag degrees of freedom be zero. This kind model has been

used for controller design of helicopters by many previous

investigators. The feedback controller then was designed by

using the MacFarlane-Potter concept of eigenvector decompo-

sition instead of integrating matrix Riccati equations.

5.3.1 Standard Performance Index

The quadratic perfornance index used here is of the form

FJ : q(YTI Y) + rfUTI U) dt (16)
_O

In the present study the output scaling matrix C is cho-

sen so that the output vector y only corresponds the three

fuselage rotation attituces, i.e. the system velocities, the
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translational displacements, and the blade dynamic variables

are not included in the coEt function. The weighting matrix-

es Q and R are assumed to be diagonal, a production of a

number and a unit matrix, qI and rI. Some investigaters

consider that q/r=l gives a good choice in terms of balanc-

ing control effort, system stablity, and system

response[37]. For the design of tighter controllers, which

tend to hold fuselage pitch, roll and yaw angles to smaller

deviations, weighting factor q/r on the fuselage rotation

angles is increased from ] to 5, and then to 25. These

tighter controllers are then evaluated on the complete sys-

tem model including the lag dynamics.

The main feedback gains obtained by applying the linear

optimal regulator theory on the model which does not include

the lag degrees of freedom, and the dampings of the advanc-

ing lag and coning lag modes obtained by applying the same

feedback on the complete mcdel including the lag degrees of

freedom are presented in Tables 5-7, 5-8, and 5-9 for the

cases of hover, 60KTS and 100KTS level flight respectively.

The resulting eigenvalues obtained from the complete sys-

tem model by applying the feedback law obtained from the

model without the lag degrees

ing the weighting factor q/r

the lag degrees of freedom.

lag mode and the coning lag

obtained for the simple roll rate feedback.

of freedom show that increas-

results in an instability in

The dampings of the advancing

mode vary with the same trend

The correspond-
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The Primary Feedback Gains:

q/r 1 5 25

Als

Roll Attitude

Bls
lllmO

Pitch Attitude

Tot

--lllll_lllmll

Yaw Attitude

Als

Roll Rate

Bls

lll_l,

Pitch Rate

Tot

ll--llllllllll

Yaw Rate

0 65

0 966

0 98c_

0 1225

0 44£ 7

0 69£ 5

I. 736 4. 143

2.087 4.529

2. 198 4. 869

0.285 0.5635

0.7718 1.3

1.076 1.633

The Damping of Lag Modes:

Advancing Lag -0.26_ 5 I. 143 2. 784

Coning Lag -1.35_ -1.039 -0.2897

Table 5-7 The Primary F,_edback Gains and The Damping of

Lag Modes For Standa:_-d Optimal Feedback at Hover
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The Primary Feedback Gains:

q/r 1 5 25

Als

Roll Attitude

Bls

Pitch Attitude

Tot

Yaw Attitude

Als

Roll Rate

Bls

Pitch Rate

Tot

Yaw Rate

0.8_) 1.792

0.8_,7 1.972

0.7_75 1.905

0. I[i 0. 290

0.3(.!96 0. 744

0.4(137 0.6848

4 195

4 439

4 434

0 5685

1 316

1 079

The Damping of Lag Modes:

Advancing Lag -0.9_ 48 -0. 0147 I. 197

Coning Lag -0.9 (.01 -0.5625 0.1967

Table 5-8 The Primary I eedback Gains and The Damping of

Lag Modes For Stand_;rd Optimal Feedback at 60KTS
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The Primary Feedback Gains:

q/r 1 5 25

Als

Roll Attitude

Bls

Pitch Attitude

Tot
--_--------------------_

Yaw Attitude

Als

Roll Rate

Bls

Pitch Rate

Tot

Yaw Rate

O. 6_ 16 I. 775 4. 189

0.7678 1.82 4.194

0.6661 1.799 4.333

O. 1248 0.2797 0.5506

0. 3418 0. 6623 I. 217

0.3678 0.6597 1.067

The Damping of Lag Modes:

Advancing Lag -1.35.1_ -0.6556 0.3157

Coning Lag -0.86w_7 -0.3597 0.4177

Table 5-9 The Primary F,_edback Gains and The Damping of

Lag Modes For Standa_-d Optimal Feedback at IOOKTS
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ing feedback boundary is also the same as the boundary for

the simple roll rate feedbazk. In fact, when the weighting

ratio q/r increases, the primary feedback gains increase

together by about the same factor. The attitude feedback

gains increase beyond the limiting value, which produce

instability for the simple attitude feedback, at q/r=5 with-

out resulting the flappin_ instability because the rate

feedback gains increase as well, which stabilizes the

coupled fuselage/regressing flap mode as shown in the last

section. However, when

limiting value, there is

from other feedback loops.

the roll rate gain is beyond the

no significant stabilizing effect

Hence the instablity that occurs

in these cases has the sane trend as roll rate feedback

alone studied in the last section.

It is worthwhile to mention that at hover the limiting

q/r ratio for the instability due to unmodeled lag dynamics

is less than 5. This number is much smaller than a similar

limiting boundary due to unmodeled flapping dynamics given

in Ref.6. This suggests that as far as stability is con-

cerned, the inclusion of the lagging dynamics in the system

modelling for the controller design has more practical sig-

nificance than the

although the latter

control and response.

inclusion of the flapping dynamics,

may be more important in terms such as
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5.3.2 Frequency-Shaped Performance Index

The poles associated with the suppressed lag degrees of

freedom have low open-loop damping and are relative high

frequency. They lie vet} close to the imaginary axis in the

s-plane. Therefore any nisplaced control energy (spillover)

will push them quickly irto instability. Readjusting Q and R

to prevent this (the only means available for the standard

performance index design) can cause a drastic loss of

closed-loop damping in t_e design mode poles, in some cases

to the point where almcst no closed-loop improvement in

damping is possible. The problem arises from the fact that

penalty matrices Q and R penalize the states and controls by

the same amount at all frequencies.

One way to avoid constant penalties is the use of

frequency-shaped cost fu_ctionals, an extention of standard

linear optimal regulator design[38]. In this method, the

performance index to be minimized is assumed to be a func-

tion of frequency as follows:

J = rYTCj_)Qcj_)YCj_) + UTCj_)RCj_)UCj_) de (17)
_-_

Note that here the weighting matrices Q and R are func-

tions of frequency, rather than constant matrices. The

detailed discussion of this method is given in Refs.39 and

40. The physical concept of the frequency-shaped cost func-

tionals is that the performance index is defined such that

the low frequency error in maintaining a desired trajectory

and the high frequency inputs are more heavily penalized



such that

frequency

ii0

the feedback energy is mainly placed on the low

fuselage dynamics. The cost function can be

defined in three ways: (I) frequency-shaped response penal-

ty with constant control p_nalty, (2) frequency-shaped con-

trol penalty with constant response penalty, and (3)

frequency-shaped both resi3onse and control penalties. It

should be noticed that the frequency-shaped response penalty

leads to increasing degrees of freedom of the system to be

augmented, and the frequenzy-shaped control penalty leads to

feed forward of the derivatives of the control inputs. The

numerical study shows that introducing new degrees of free-

dom of the system, whose 9rder is quite high already, not

only results in difficultLes for system analysis but also

requires extremely high feedback gains which are physically

unrealistic. Therefore, only a frequency-shaped control

penalty is used in this stldy.

The performance index _hen is defined as:
2

_, _ • b 2

j = [ q yTy + r f ) U_U d_ (18)
b 2J

The frequency-shaped c)ntrol penalty used here is equiv-

alent to inclusion of a slnaping filter in the forward path

of a standard optimal co:_trol problem. The corresponding

shaping filter has a transfer function of the form:

U = b/(jw+b) Uc (19)

The low pass characteristics of the filter will reduce

the high frequency component in the feedback so as to penal-

ize the high frequency con:rol. This is physically conven-
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ient for the implementatioll because actuator dynamics can be

thought of as having the form of shaping filters. Since the

frequencies of the coning and advancing lag modes are about

38 and 16 rad/sec, the cor_er frequency of the low pass fil-

ter used in the study is chosen to be I0 rad/sec.

The ratio q/r here can not be directly compared with the

ratio in the eq.(16) because the frequency-shaped control

penalty has changed the spectrum distribution of r in fre-

quency domain. Thus the 1_atio q/r is decided independently

here and the chosen ratios for the frequency-shaped cost

functions are I0, I00, I000, and I0000.

The main feedback gain_!_ obtained by applying the linear

optimal regulator theory with frequency-shaped cost control

penalty on the model which not includes the lag degrees of

freedom and the dampings oi! the advancing lag and coning lag

modes obtained by applying the same feedback on the complete

model which includes the lag degrees of freedom are present-

ed in Tables 5-10, 5-11, and 5-12 for the cases of hover,

60KTS and 100KTS level flicTht respectively.

The resulting eigenvalues obtained from the complete sys-

tem model show the same trend for an instablity in lag modes

as standard optimal control. However corresponding feedback

gains for the instablity are much higher than the standard

cost function. The freq_ency shaped-optimal feedback has

introduced new poles into the overall system, the Butter-

worth configuration of the system has been changed so that
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The Primary Feedback Gains:

q/r I0 i00 i000 I0000

q

!

Als

Roll Attitude

Bls

Pitch Attitude

Tot

Yaw Attitude

Als

Roll Rate

Bls

Pitch Rate

Tot

Yaw Rate

0.94 5.3 22.2 78.0

3.07 9.44 29.0 88.77

3.13 9.84 30.9 96.37

0.2 1.16 4.22 12.1

1.71 4.28 10.37 24.37

2.53 5.64 12.4 26.86

The Damping of Lag Modes:

Advancing Lag -2.00 -2. Ol -I. 63 0.6

Coning Lag -1.40 -1.78 -2.36 -I.II

Table 5-10 The Primary Feedback Gains and The Damping of

Lag Modes For Frequenc) Shaped Optimal Feedback at Hover
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The Primary Feedback Gains:

q/r I0 I00 I000 I0000

I

w

Als

Roll Attitude

Bls

Pitch Attitude

Tot

Yaw Attitude

Als

Roll Rate

Bls

Pitch Rate

Tot

Yaw Rate

1.00 5.6

2.58 8.56

1.96 7.76

0.27 1.27

1.44 3.94

1.55 3.85

22.8 78.3

27.7 87.59

26.8 86.98

4.3 12.16

10.09 24.75

8.88 19.6

The Damping of Lag Modes:

Advancing Lag -2.04 -2.09 -2.03 -1.07

Coning Lag -1.26 -1.48 -1.56 -0.44

Table 5-11 The Primary Feedback Gains and The Damping of

Lag Modes For Frequency Shaped Optimal Feedback at 60KTS
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The Primary Feedback Gains:

q/r I0 I00 I000 I0000

!

Als

Roll Attitude

Bls

Pitch Attitude

Tot

Yaw Attitude

Als

Roll Rate

Bls

Pitch Rate

Tot

Yaw Rate

0.83

2.23

i. 49

0.25

1.20

1.38

5 24

7 68

6 92

1 21

3 45

3 66

22.27 77.88

25.63 82.85

25.57 85.43

4.14 11.83

9.22 23.54

8.70 19.5

The Damping of Lag Modes:

Advancing Lag -2.10 -2.13 -2.08 -1.07

Coning Lag -1.23 -1.37 -i. I0 0.046

Table 5-12 The Primary Feedback Gains and The Damping of

Lag Modes For Frequency Shaped Optimal Feedback at IOOKTS
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q/r

Hover

60 KTS

I00 KTS

q/r

Hover

60 KTS

I00 KTS

Table 5-13

115

] 5

Damping Frequency Damping Frequency

-0.99 1

-1.29 1

-2.93 4

-2.22 7

-5.80 0

-6.68 0

243

971

227

5O4

000

000

-1.46 1.862

-1.76 2.737

-3.63 5.495

-2.33 7.414

-7.46 0.000

-9.30 0.000

-I. 03

-1.50

-3.15

-2.34

-4.94

-9.33

1.807

2.025

4.255

7.335

0.000

0.000

-1.40 2.454

-2.16 2. 897

-4.24 6. 123

-2.23 6.920

-5.78 0.000

-16.2 2.228

-I

-I

-4

-2

-6

-9

08 1.829

62 2.443

09 4.708

52 7.420

12 0.000

61 0.000

-1.56 2.568

-2.26 3.228

-5.15 6. 729

-2.30 7.039

-7.19 0.000

-15.6 0.000

.'_:5

Damping Frequency

-2.10 2.808

-2.45 3.716

-5.29 6.687

-2.44 7.261

-8.82 0.000

-11.5 0.000

-I .96 3

-3.12 4

-2.11 6

-6.19 7

-6.72 0

-17.5 5

370

264

768

457

000

903

-2.20 3.700

-3.31 4.531

-2.33 6.729

-6.82 8.212

-8.69 0.000

-23.2 0.000

The Poles Asscciated With The Short Period Flight

Dynamic Characteristics of The Helicopter Under

Standard OptiH1al Feedback
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q/r

Hover

60 KTS

I00 KTS

I0 i00

Damping Frequency

-0.79

-0.89

-1.85

-4.45

-4.43

-2.07

1 545

1 891

1 745

2 338

5 137

7 672

116

Damping Frequency

-I

-I

-2

-5

-6

-2

-1.80 1

-0.81 1

-1.29 2

-3.78 2

-5.27 5

-2.24 7

14 2.208

34 2.638

49 3.224

29 3. 702

92 6.951

15 7.768

130 -2.12

844 -I.i0

496 -2.14

I01 -4.72

312 -7.32

747 -2.48

-1.98 0

-0.89 1

-1.32 2

-4.25 1

-5.56 6

-2.47 7

687 -1.20

954 -2.95

654 -2.02

944 -5.13

063 -2.76

972 -7.61

q/r I000 I0000

Hover

60 KTS

2.791

2.387

3.683

3.032

7.800

7.773

Table 5-14

I00 KTS

2.593

3.075

3.516

3.255

7.969

8.690

Damping Frequency Damping Frequency

-1.61 3.101 -2.26 4

-1.96 3.625 -2.47 5

-3.40 4.539 -4.51 5

-6.68 5.618 -9.48 8

-2.41 7.962 -3.35 8

-12.4 11.19 -15.4 0

297

087

268

727

358

000

-1.57 3.192 -2.40 4.398

-2.62 4.166 -4.27 5.313

-2.79 5.226 -1.84 5.757

-6.29 4.302 -I0.0 6.375

-3.21 7.921 -5.00 9.365

-10.9 11.63 -18.2 11.49

-1.67 3.571 -2.99 4.888

-2.51 4.563 -1.57 5.491

-3.79 5.204 -5.14 5.745

-6.31 5.047 -5.42 9.550

-3.64 8.092 -8.72 8.234

-11.5 13.06 -17.9 17.57

The Poles

Dynamical

Frequency

Associated With The Short Period Flight

Characteristics of The Helicopter Under

Shaped Optimal Feedback
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damping ratio can not be used as a measurement of the system

augmentation. The dampings and frequencies of the short

period modes associated closely with the fuselage dynamics

are presented in Table 5-13 and Table 5-14 for both standard

and frequency-shaped cost functions. If the lowest damping

of these modes is used as a measurement for the system's

augmentation, the case q/r=1000 with the frequency-shaped

cost function will be more stabilized by the feedback than

the case q/r=5 with the standard cost function, and the case

q/r=10000 with the frequency-shaped cost function will be

more stabilized by the feedback than the case q/r=25 with

the standard cost function. The feedback limitations for

the frequency-shaped optimal control due to the unmodelled

lag degrees of freedom therefore are not only numerically

much larger but also offering much stronger system augmenta-

tion in stability and control characteristics. In addition,

the feedback gains required by the q/r=10000 case are far

higher than those that are physically practical. This sug-

gests that by applying the frequency-shaped cost function on

the helicopter automatic control system design, the unstable

effect due to the unmodelied lag degrees of freedom can be

removed.

To illustrate the advantages of the optimal feedback con-

trol, the frequency responses of helicopter roll attitude to

lateral cyclic input are shown in Figs. 5-23, 5-24, and 5-25

for the standard optimal feedback control and in Figs. 5-26,
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control.
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the frequency-shaped optimal feedback

By comparing with the corresponding frequency responses

obtained by the simple attitude feedback, it can be seen

that the main improvements obtained by the standard optimal

feedback control are limited in phase characteristics. The

Bode amplitude characteristics by the standard optimal feed-

back is only improved a little by smoothing the peak at high

frequency end in the bandwidth obtained by the strong atti-

tude feedback. The phase characteristics, in contrast, have

a significant improvement by reducing the phase shift at

high frequency range 5-15 rad/sec. At these high frequen-

cies, the simple attitude feedback cannot offer any reduc-

tion. As for the very low frequencies, the standard optimal

feedback gives the same trend in both amplitude and phase

characteristics as the simple attitude feedback.

The frequency-shaped optimal feedback control, however,

has improved the frequency responses in both amplitude and

phase characteristics. The frequency responses obtained by

the frequency-shaped optimal feedback have perfect low fre-

quency characteristics. The amplitude characteristics at

low frequencies up to 2 rad/sec is a straight line for any

q/r ratio. For phase characteristics, the frequency-shaped

optimal control has totally removed the phase lead resulting

from the nonminimum phase characteristics; this is especial-

ly obvious in the hover case. In addition, at a quite wide



range of frequency,

significant reduced
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the phase shift is very small and is

along with the increasing of the q/r

ratio. For the high frequency part, in spite of the fact

that the frequency-shaped optimal control is designed to

reduce the high frequency augmentation, the obtained

improvements seem still better for the high gain simple

attitude feedback. The amplitude characteristics obtained

by the frequency-shaped optimal feedback are not only better

than the simple attitude feedback by removing the high fre-

quency peak but also better than the standard optimal feed-

back in term of the maximum achievable bandwidth. Take hov-

er case as a example, the q/r=5 standard optimal feedback

case has almost the same bandwidth with the q/r=1000

frequency-shaped optimal feedback case. However for standard

optimal feedback, the advancing lag mode has became unstable

far below the q/r=5, in contrast, for the frequency-shaped

optimal feedback, the system will be stable until q/r=10000.

For the high frequency phase characteristics, the reductions

of phase shift obtained by the frequency-shaped optimal

feedback are smaller than those obtained by the standard

optimal feedback but still offer improvements which can not

be obtained by the simple attitude feedback because for the

simple attitude feedback, there is no phase shift reduction

at frequencies higher than 6 rad/sec. Therefore, it is

clearly suggested that the improvements obtained by the

frequency-shaped optimal feedback are much more practical.
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5.3.3 Simplified Optimal Control

The design of linear controllers in this section results

in a feedback structure which requires the measurement and

feedback of all state variables except translational posi-

tions. The obvious impracticality of this requirement has

led to several research efforts directed toward the synthe-

sis of simplified controllers which are more easily imple-

mented than would be the optimal control. As a result, a

series of simplified controllers are developed through suc-

cessive reduction in the number of feedback loops while

using the feedback gain factors obtained for the optimal

control. The sequence of the loop reduction is determined by

both the difficulties for measurement and the importance of

the feedback requirement of the loop;the latter is naturally

measured by the amplitude of the corresponding gain for the

optimal control. In addition, particular emphasis is placed

on eliminating the feedback of rotor degrees of freedom. The

gain constants for these reduced state feedback controller

are chosen as the values obtained for the corresponding

states in the optimal controller.

The first loop reduction is eliminating the feedback of

dynamic inflow because these state variables can not be

measured, and removing the feedback of translational fuse-

lage velocities because the corresponding gains for this

group state variables are far smaller than others, conse-

quently they are considered the least important for the
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feedback control. The number of remaining feedback loops

for this simplified controller, called controller A, is 12.

For the controller B, flapping velocities of the blade are

also eliminated from the feedback. This is due to both the

difficulties in measurement and the importance considera-

tion. The number of remained feedback loops for this sim-

plified controller is 9. The controller C is formed by

eliminating flapping attitudes from the system feedback

loops. The required gains for these attitude feedback loops

are in the same order as those for fuselage attitudes, but

the measurements are more difficult and more expensive than

the corresponding fuselage attitudes because the resolution

of the measurements from rotating to nonrotating axes is

required. The number of remained feedback loops for this

simplified controller C is 6. The final loop reduction is

eliminating the feedback of three fuselage angular veloci-

ties simply because for standard optimal control, removing

these feedback loops result in

the dampings of the lag modes,

resulting stablity limitations

The number of remained feedback

controller D is 3.

a favourable increasing of

which are the very modes

for the feedback control.

loops for this simplified

The poles associated with the short period flight dynami-

cal characteristics obtained by various reduced loop con-

trollers are shown in the Table 5-15 for the simple standard

optimal feedback control with q/r=l and in the Table 5-16
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Number of
feedback loops

Hover

12

Damping Frequency

-I 01
-i 30
-2 99
-2 22
-I 35
-0 28

1.239
1.979
4.578
7. 502
17.13
39.42

Damping

-I.01
-1.30
-2.96
-2.22
-12.7
-0.33

Frequency

1.239
1.963
4.563
7.501
17.20
40.01

60 KTS -1.06 1.833
-1.54 2.056
-3.07 4.302
-2.35 7.333
-0.99 17.16
-0.94 39.13

-I .06
-1.56
-3.06
-2.35
-0.94
-0.84

I. 828
2. 049
4.212
7.328
17.21
39.54

I00 KTS -1.09 1.847
-1.64 2.553
-4.01 4.683
-2.51 7.423
-0.87 16.88
-1.36 38.73

-I .09
-1.66
-3.94
-2.52
-0.83
-1.33

1.845
2.541
4.578
7.419
16.92
38.99

Number of
feedback loops

Hover

Damping Frequency

-1.02 1.239
-1.89 2.871
-3.01 7.061
-2.23 7.460
-1.60 16.79
-0.07 39.11

Damping

-I. 02
-0.03
-0.66
-2.02
-1.53
-2.03

Frequency

1.589
2.521
5.825
7.643
17.98
39.51

60 KTS -1.20 1.834
-1.75 2.674
-1.96 7.005
-3.52 7. 601
-1.15 16.96
-0.91 38.93

-I 79
-0 32
-5 88
-2 12
-I 37
-2 09

2.042
2.583
5.453
7.881
17.75
39.43

I00 KTS -1.14 1.917 -0.23 2.048
-2.00 3.168 -0.44 2.826
-1.97 7.371 -0.63 5.980
-4.27 9.031 -2.28 8.249
-1.04 16.52 -1.39 17.36
-1.33 38.60 -2.13 38.89

Table 5-15 The Poles Associated With The Short Period Flight
Dynamic Characteristics of The Helicopter Under
Simplified Standard Optimal Feedback



Number of
feedback loops

Hover

60 KTS

I00 KTS

12

Damping Frequency Damping

129

Frequency

-1.61 3.127 -1.64 3.133
-1.90 3.628 -2.00 3.532
-3.44 5.186 -3.13 5.177
-8.10 3.895 -7.33 4.355
-2.43 7.960 -2.44 7.956
-10.3 0.000 -ii.0 0.000

-1.43 3.194 -1.49 3.192
-2.74 4.104 -2.92 3.971
-2.33 5.336 -2.17 5.272
-6.59 3.712 -9.98 5.907
-3.23 7.932 -3.27 7.943
-11.6 10.55 -16.2 8.544

-1.49 3.540 -1.55 3.537
-2.59 4.872 -2.45 5.204
-3.30 5.058 -3.29 4.458
-8.32 3.304 -8.14 4.703
-3.60 8.088 -3.67 8.151
-10.9 13.26 -12.7 13.53

Number of
feedback loops

Hover

60 KTS

I00 KTS

Table 5-16

3

Damping Frequency Damping Frequency

-1.62 3.398 0.326 2.814
-0.74 5.392 0.770 3.561
-3.13 0.000 -6.87 1.022
-13.6 9.951 0.695 6.575
-2.33 7.999 -1.92 7.661
-11.5 0.000 -11.8 0.000

-1.22 4.297 0.453 3.103
-1.19 5.453 0.545 3.705
-1.55 7.849 0.619 6.324
-3.04 0.000 -1.87 8.001
-3.15 9.618 -11.5 2.551
-19.5 7.610 -24.9 7.190

-1.28 4.307 0.405 3.154
-0.97 5.978 0.538 3.891
-1.92 8.438 0.623 6.665
-3.18 0.000 -11.6 0.000
-2.25 10.99 -1.95 8.359
-24.2 11.13 -15.6 11.96

The Poles Associated With The Short Period Flight
Dynamical Characteristics of The Helicopter Under
Simplified Frequency Shaped Optimal Feedback
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q/r=1000.
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frequency-shaped optimal feedback control with

Both of them can offer stabilized system dynamics

at all of three chosen flight conditions if all of state

variables are available for measurement. Since the standard

optimal control with high q/r ratio usually results in lag

dynamical instability, the poles associated with the lag

degrees of freedom are also given in the Table 5-15.

The elimination of the feedback of the dynamic inflow,

the translational velocities and the flapping velocities

together has little effect on the system dynamics. Compared

with the baseline optimal controller, the variation of the

short period fuselage dampings and frequencies is quite

small, less than 5% for the standard optimal control and I0%

for the frequency-shaped optimal control. These results

suggest that at least half of the feedback loops theoreti-

cally required by the optimal control method, dynamic

inflow, fuselage translational velocities and blade flapping

velocities, are not necessary for practical implementation.

The 18 loop feedback control system studied here can be

replaced with 9 loop implementation without any significant

impact on the system dynamics. The state variables involved

in these 9 unnecessary loops are difficult to measure and to

reconstruct. Therefore the difficulties in implementing the

optimal control methodology is greatly reduced by simply

eliminating these feedback loops. In the remaining feedback

loops, the only blade state variables left are the flapping
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angles. Although without feedback these state variables, the

overall system is still stable, the dynamic characteristics

are almost the same as the original system without any aug-

mentation of the damping ratio. It seems, therefore, that

the flapping angle feedback has to be part of the optimal

control implementation. Fortunately these state variables

need not be measured because it has been found they can be

estimated sufficiently accurately from fuselage state meas-

urements[6].

5.3.4 Summary

Results in this section show that the multivariable opti-

mal control theory is a powerful tool to design high gain

augmentation control systems. The frequency-shaped optimal

control design can offer much better flight dynamic charac-

teristics than either the simple feedback control or the

standard optimal feedback control. The feedback gains com-

puted from the optimal control theories can be used to

develop reduced state feedback systems. The feedback loops

required can be significantly reduced to the half of the

original optimal control designs without any noticable

effect on the overall system dynamics.

Results in this section also show that the lagging dynam-

ics has a more significant impact on the automatic control-

ler design than the flapping dynamics. If a standard design

method is used, the lag degrees of freedom must be included

in the system modelling. Otherwise a high gain control sys-
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tem design can lead to unstable close-loop responses due to

the unmodelled lag dynamics. Using a frequency-shaped con-

trol penalty in the system performance index is an effective

way to obtain a stable margin for the feedback system design

without need to model the lagging dynamics.

This margin is essential for any real implementation of a

control system because the actual structure has an infinite

number of modes, and any finite description of the actual

system, though very high order, still has modeling errors.

These are errors which cannot be modeled generally due to

limited knowledge of the structural behavior at high fre-

quencies. Thus if a system controller is important to the

stability and performance, a very robust control system is

required. This is especially true for the helicopter sys-

tems because the difficulties for modeling the high harmonic

blade dynamics and aerodynamics.

shaped cost penalty seems to be

the helicopter controller design.

Therefore the frequency-

a very good methodology for



Chapter VI

CONCLUSIONSAND RECOMMENDATIONS

This thesis has had four fundamental objectives:

(I) By applying the matrix displacement method and with

the help of a symbolic computer processor, to develop a lin-

ear description of helicopter system including blade dynam-

ics.

(2) To take the rotor/empennage interaction into account

without destruction of the linearity of the system model.

(3) To investigate the effects of blade dynamics on the

automatic control system design with the model developed.

(4) By using the modern optimal control technology, to

find a control methodology capable of removing the limita-

tions due to the unmodelled high frequency blade lag dynam-

ics on the flight control system design of the helicopter.

As indicated in the correlation results with flight test

data shown in Chapter 4, the first and second objectives of

the study have been largely achieved. The excellent corre-

lations for all kinds of small control inputs

for lateral and directional control inputs at

ward flight speeds are evidence of the success

earized model

the effects

at hover and

various for-

of the lin-

and the simple but effective description of

of the main rotor wake on the tail rotor and

- 133 -
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fixed tails. It is the first linear model of the helicopter

including blade dynamics for forward flight, that makes the

analysis of flight stability and control by the convenient

eigenvalue and eigenvector analysis and the feedback control

design by modern linear control theory possible. The vali-

dation of the model reveals many new ideas.

(I) A linearized model of the helicopter is quite satis-

factory for predicting the stability and control character-

istics. The proper linear model produces a good representa-

tion of helicopter control responses for forward flight as

well as hover.

(2) For forward flight the sidewash variation at tail

rotor and vertical tail and the nonuniform downwash at hori-

zontal tail are more important for flight dynamic analysis

than the most inertia, mechanical, and aerodynamic nonli-

nearities. Therefore, better understanding of the influence

of rotor wake on the tail surfaces and tail rotor is one of

the most important factors needed to improve the representa-

tion of helicopter motions. Consequently the proper simple

method to treat the influence will be a key breakthrough for

development of helicopter simulation.

(3) The simple flat wake model employed in this paper

although crude appears to be a good approximation when

sideslip angle remains relatively small.

(4) The influence of the dynamic inflow is most signifi-

cant in hover and somewhat less significant in translational
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flight. Its effect can be estimated by methods given in the

literature.

The disadvantages of the model mainly result from the

assumption of constant rotating speed of the main rotor,

which have not been shown to be the case for longitudinal

control inputs at forward flight. It seems that the inclu-

sion of the engine and drive train will be the logical next

step for better modeling. Changes of rotor speed are a

result of an imbalance of the main rotor torque required and

the engine torque available. Therefore the rotor speed

degree of freedom must involve the engine dynamics and fuel

control system. As for enlarging the range in which the

model is validated for lateral and directional control, the

first thing to do should be improving the modeling of the

influences of the main rotor wake on the tail rotor and

fixed tail surfaces.

assumption there is

inputs.

The third

achieved by

Chapter 5.

methodology

obtained by

It seems that for small perturbation

still room left for increasing control

and fourth objectives also have been largely

the classical and optimal control studies of

The results obtained by simple feedback control

have very good agreements with the results

previous works for hover flight condition and

have physically consistent results for translational flight

conditions. The results obtained by the optimal control

methodology has successfully introduced a new feedback con-
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trol concept originally developed for space structure stabi-

lization into the helicopter control system design. The

following conclusions may be drawn.

(I) The control feedback gain limitations due to unmo-

deled lagging dynamics are much closer to those currently

used in the helicopter industry than those due to unmodeled

flapping dynamics. Therefore much attention has to be given

to the lag degrees of freedom.

(2) Most of the feedback gain limitations are quite

high except the roll rate, which has the same order as those

currently used in the helicopter industry.

(3) The application of frequency-shaped optimal control

methodology gives us a practical robust control design meth-

od for high gain tighter controller design without need to

worry about the effects of spillover by the unmodeled high

frequency modes.



REFERENCES

[I] C.W.EIIis, "Effects of Rotor Dynamics on Helicopter

Automatic Control System Requirements" Aeronautical Engi-

neering Review, July 1953

[2] R.E.Donham,S.V.Car_inale and I.B.Sachs, "Airborne and

Ground Resonance Characteristics of a Soft In-Plane Rigid-

Rotor System" J. Am. Helicopter Soc. 14 (1969)

[3] R.S.Hansen, "Towards a Better Understanding of Heli-

copter Stability Derivatives" J. Am. Helicopter Soc. 29

(1984)

[4] K.Miyajima, "Analytical Design of a High Performance

Stability and Control Augmentation System for a Hingeless

Rotor Helicopter" J. Am. Helicopter Soc. 24 (1979)

[5] H.C.Curtiss Jr., "Stability and Control Modelling"

Paper No. 41 in Twelfth European Rotorcraft Forum Sept. 1986

[6] W.E.Hall Jr. and A.E.Bryson Jr., "Inclusion of Rotor

Dynamics in Controller Design for Helicopters" J. Aircraft

Vol.10. No.4 April 1974

[7] S.J.Briczinski and D.E.Cooper "Flight Investigation

of Rotor/Vehicle State Feedback" NASA CR-132546

[8] K.H.Hohenemser and Sheng-Kuang Yin, "The Role of

Rotor Impedance in the Vibration Analysis of Rotorcraft"

Vertica Vol 3. No. 3/4 1979

- 137 -



138

[9],R.A.Ormiston, "Aeromechanical Stability of Soft

Inplane Hingeless Rotor Helicopters" Third European Rotor-

craft and Powered Lift Aircraft Forum, Paper No 25 (1977).

[I0] J.J.Howlett "UH-60A black Hawk Engineering Simula-

tion Program: Volume I - Mathematical Model" NASA CR-166309

1981

[Ii] W.Warmbrodt and P.Friedmann, "Formulation of Coupled

Rotor /Fuselage Equations of Motion." Vertica 3, 254-271

(1979).

[12] W.Johnson, "A Comprehensive Analytical Model of

Rotorcraft Aerodynamics and Dynamics." NASA TM 81182

(1980).

[13] D.H.Hodges, "Aeromechanical Stability of Helicopter

With a Bearingless Rotor--Part I: equations of motion" NASA

TM-78459 (1978).

[14] J.Levin, "Formulation of Helicopter Air Resonance

Problem in Hover With Active Controls" M.Sc. Thesis, Univ.of

California,Los Angeles (1991).

[15] R.T.Lytwyn,W.Miao and W.Woitsh, "'Airborne and Ground

Resonance of Hingeless Rotors." J. Axn. Helicopter Soc. 16

(1971)

[16] F.K.Straub and W.Warmbrodt, "The Use of Active Con-

trols to Augment Rotor/Fuselage Stability" J. Am. Helicop-

ter Soc. 30 (1985)

[17] Gopal H. Gaonkar and David A. Peters "Flap-Lag Sta-

bility With Dynamic Inflow by the method of Multiblade Coor-

dinates" J. Aircraft 17 ppil2-119 (1980)



139

[18] Mark. G.Ballin "Validation of a Real-Time Engineering

Simulation of the UH-60A Helicopter" NASA TM-88360 1987

[19] B.Etkin, "Dynamics of Atmospheric Flight" John Wiley

& Sons,lnc. New York 1972

[16] M.P.Gibbons and G.T.S.Done, "Automatic Generation of

Helicopter Rotor Aeroelastic Equations of Motion" Vertica

Vol 8. No 3.1984

[17] G.H.Gaonkar and D.A.Peters, "Effectiveness of Cur-

rent Dynamic-Inflow Models in Hover and Forward Flight" J.

Am. Helicopter Soc. Vol 31 No 2 (1986)

[18] Wayne Weisner and Gary Kohler, "Tail Rotor Perform-

ance in Presence of Main Rotor , Ground, and Winds" J. Am.

Helicopter Soc. 19 (1974)

[19] Dean E. Cooper, "YUH-60A Stability and Control" J.

Am. Helicopter Soc. 23 (1978)

[20] V.K.Baskin, "Theory of The Lifting Airscrew" NASA TT

F-823 1976

[21] Vil'dgrube, L. S. "Theory of Lifting Airscrew With

a Flat Vortex System" All-Union Meeting on Theoretical and

Applied Mechanics. Proceedings of Lectures USSR, 1960

[26] R.T.N.Chen and W.S.Hindson "Analytical and Flight

Investigation of the Influence of Rotor and Other High-order

Dynamics on Helicopter Flight Control System Bandwidth"

Paper presented at International Conference on Rotorcraft

Basic Research, Research Triangle Park, NC, February 1985



140

[27] David R. Downing and Wayne H. Bryant "Flight Test of

a Digital Controller Used in a Helicopter Autoland System"

Automatica, Vol. 23, No. 3, May 1987

[28] R. F. Stengel, J. R. Broussard and P. W. Berry

"Digital Controllers for VTOL aircraft" Proceedings of the

1976 IEEE Conference on Decision and Control, Dec. 1976

[29] K.B.Hilbert and G.Bouwer "The design of a Model-

Following Control System For Helicopters" AIAA Paper

84-1941, 1984

[30] D.L.Key and R.H.Hoh "New Handling Qualities Require-

ment and How They can be Met" Proceedings of the Annual

Forum of American Helicopter Society, 43rd, 2, 1987

[31] W.L.Garrard and B.S.Liebst "Design of a Multivaria-

ble Flight Control Systen_ for Handling Qualities Enhance-

ment" Proceedings of the Annual Forum of American Helicopter

Society, 43rd, 2, 1987

[32] Dale,Enns "Multivariable Flight Control for an

Attack Helicopter" Proceedings of the 1986 Automatic Control

Conference, Williamsburg VA. June, 1986

[33] M.I.Young, D.J.Bailey, and M.S.Hirschbein, "Open and

Closed Loop Stability of Hingeless Rotor Helicopter Air and

Ground Resonance" Paper No.20. NASA SP-352, pp 205-218.

[34] W.Johnson, Helicopter Theory. Princeton University

Press, Princeton, New Jersey (1980)

[35] A.E.Bryson, and Y.C.Ho "Applied Optimal Control"

Hemisphere Publishing, Washington D.C. 1975



[36] T.Kailath "Linear Systems" Prentice-Hall,

Cliffs, N.J. 1980

141

Englewood

"Optimal Control of Helicopter Aerome-

C.D.V.Palmer,

and Cost of

Guidance and Control

[37] F.K.Straub,

chanical Stability" Vertica Vol ii. No 3.1987

[38] B.D.O.Anderson and J.B.Moore "Linear Optimal Con-

trol" Prentice Hall, Englewood Cliffs, N.J. 1971

[39] N.K.Gupta, "Frequency-Shaped Cost Functionals:

Extensions of Linear Quadratic Gaussian Design Methods" AIAA

J. Guidance and Control, Nov./Dec. 1980

[40] Lt.D.B.Ridgely, Siva S.Banda, and

"Reduced Order Control Design, Benefits

Frequency-shaped LQG Methodology" AIAA

Conference, Gatlinburg, TN, Aug. 1983



142

APPENDIX A

Derivation of System Equations of Motion

1) The Transformations between frames

The notations for transformation matrices are

I O O ]IxC#) = O cos_ -sln_

O sin_ cos_
[°0 ]ty_ e) = 1 0

sine 0 cose

cos%# --sln_ O ]• zC_) 1 sin_ cosw O

O O I
[o0, 0
'--sin_ 0 cos/3

_os[-sin[ 0 ] _COSPk --sJ.n_k Ol•=c:_. isis: cos_o ,=c_ - _,i._k c_ k o
LO 0 I LO O I

The fig. R-1 shows the relationship between the F frame
1

and the inertial frame:

z e z fl Vt sinC oO
C J)

Fig. R-_. shows the relationship between the F frame and

the F z frame. Beside the translational perturbations, which

carry the frame origin from the trim hub center to the pertur-

bated hub center, the perturbated rotations have following

sequence:

C13 A rotation -F about Zft , carrying axes to OX'Y'Z'.

CR) A rotation e about Y', carrying axes to OX"P'Z".

C3) A rotation -# about X", carrying axes to the F frame.
2

Therefore, the transformation relationship for a v.ctor

is

{X)fl " (AXhu b) + _zf-vO_),(e)_xC-_#) (X)fz CR)
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where (AXhu b) is the translational perturbation at hub.

Fig. 2-3 shows the relationship between the F z frame and

the H frame, it is easy to obtain

(X}f z = _z(@ k) {X)_ C3)

Fig. 2-4 shows the relationship between the H frame and

the B frame. Beside the hinge offset displacement, the rota-

tions have following sequence:

¥'Z'.
CI) A rotation -[ about Z h, carrying axes to Oh'X h" h h

Ca) A rotation -f9 about Yh'" carrying axes to the B frame.

The tranformation relationship for a vector is

e I C4)
(X) h = 0 + @z(-[) _(-_) (X>b

0

2) Kinetic Energy

The position of a fuselage element is given by

<Xm} = {Xcg) _ _z(-_)_)Ke)_x(-@) {Xm}f CS)
o o

(Xm)f contains the body axis coordinates of the point,

(Xcg} and (Xm) are the locations of the center of gravlty

mnd the point in the inertial axis system'-

The position of an element of a blade in the B frame is

given as:

T

(Xm) b = [ r, O, 0 ]

Then the position of an element of the blade in the

CO)

inertial axis system is given by:

<_r=-[-.... ....... .'_,

OF POOR QUALjTf
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O

I]}]+ 0

0

+ {Xh} C73

(Xh} is the location of the rotor hub center in the

inertial axis system

The kinetic energy can be written as:

I dx dz

If = dYm
T = -- lC--) z + C------) z + C--

2 +b dt dt dt

.)z] dm C8)

3) Potential Energy

The potential energy is given by

v = N g CZcg) + c E K_ O_ + E K_ _" 1,2
• k k k

CO)

4) Generalized Force:

Using the position vector given in Eq. C6), it is straight

forward to get the velocity of an element of a blade in the in-

ertial axis (Wbfr)) . The expression for the velocity components

in the B frame is

(WbCr)) b = _y{8) _zC[) _zC-¥, k) '_xC4,3 _yC-e) _zC_,) .CWbCr))

CI0)

(Vbfr)) is the velocity components of the rotor ele_nt

relative to the inertial axis in the inertial frame. (%qbCr)}
b

is the velocity components in the B frame.

Then we get the normal and tangential airfoil velocities

of the element of the blade in the B frame from the relationship:
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Vt I = {YbCr)>b
Vp
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CI13

From quasisteady strip theory we I_ve:

P

dD k m -- c b Vt:Cr) Cd °

2

dr (1R)

dL
k

P

a Vt:(r) (Ok(r) -= -- C t c b

2

VPk(r) + VnkCr)

Vtk(r)

) dr C13)

where 8kCr) is the local pitch angle of the blade:

OCt) k 1 80 -- 8' r - _s cosp k - Bzs sln_u k
(14)

where VnkCr) is the total local downwash of the blade:

VnkCr) = Vnokfr) + Vndk(r,t)

= Ynot • Vv, r cos_ k ( Steady In_flow )

V Ct) • V Ct) r cosw k- .+ V (t)
o ¢ C

C Dynamic Inflow )

r sln_ k
(15)

The aerodynamic moments and forces of the kth blade

are obtained by:

Fn k m dFnkfr) -

JO

-edLk(r)

JO

Ftk - r) = r) * (

JO JO

VPkCr) 4" Vnk(r)

VtkC r)

,) dL k

Mfk = r) MLk m

JO JO

(18)

Where Mr and Mt are the blade flap and lag aerod)n_amic

moments and Fn and Fi are the blade normal and £nplane aero-
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dynamical shear forces. The expressions for these forces and

moments in the H frame are:

_Fp 1 [o][ _F_ h . _y(fl) _zC_) -F_

Fn h k Fn k

_Mth -Mr k

C 173

Then the virtual work terms due to the aerod)_nmmtc forces

acting on the rotor blades can be obtained by

6Wr " _ [ M6k 6/_k _ ML k 6[ k "_ ( Mthk 4 Fi.hke)( 6_ )
k

-I-( ]Mt'hk ,IFFnhke )( -6@ sinw k -- 68 cos@' k )

4 MXhk ( 6@ COS_U k - 68 sin_u k )

FPhk ( - 6Xhe c°s_ k -

+ Fi.hk ( + 6xhe slny_ k --

Following the same procedure, the virtual

6Yhe $1n_ k ) + Fnhk 6Zhe

6yhe COS_k) ] (18)

work term

due to the tall rotor, the fixed tall surfaces, and the fuselage

can be obtained.

53 The Lag Damper Modelling

The lag damper is modeled bM a dissipation functions

D - _ C_. C d[ )z / p.

k d¢

Clg)

63 The equations of motion

Then, the final system equations are

d 8C T-V) _ T-V)

,.) -- +

dt dC_.

dt

8D 6W

dQ_ 6(_

8<-------)
dt

(P-O)
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7) The Multlblade Coordinates

The multlblade coordinates are defined as follows

/_k = _o - /_s COS_k -- _z sinPk (21)

[k I Co -- _, COS_k -- _Z slnPk (22)

Then, one obtains the multiblade coordinates An term of

blade flapping and lagging angle.

Collective flapping and lagging (coning)"

I I

N k N k

CE5)

First order cyclic flapping and lagging (tiltlng)!

k
N

I

_z = _ _ -_ksinWk
N k

C263

1 I

[i " -- _ -_kCOS_Uk CZ = -- _ --_ksln_k

N k N k

C29'3
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Pitt's Model of Dgn_amic Inflow

The static coupling matrix, the air mass Inertial matrix

and the dimensional adjustor mtrix are glwen below:

[M] =

128R

0

7R.

-I 6R
0

0

45_

0

0

45n

[L] =

Vso l

Vso

2 84 41 +slnaa

15n| 1-si no_ -4sl naa

04 41*sinacx I +sinaa

0 0

[D] =

0

_R z

1
0

0

0

0
p_R 4

1

_R 4

CVnot-Vsi noO C 2Vnot-Vsl noO ._V2c os a

_/VZcosZa + CVnot-VstnoO z

a_ = Tan -s I Vnot-Vsln_vcosaI

0

0

-4
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The Flat Vortex Theory For Nonuniform Inflow

I) Flat vortex model

Under ass_mptios mentioned in Chapter 3, it will be more

convenient to use alr-traJectory reference frame for the deri-

vation of the flat vortex theory. Thlsreference frame has an

origin fixed to the hub center of the hellcopter, and the OX

axis is directed along the velocity vector but backward. The OZ

axis is directed up. As a result, the vortex layer will me-- in

the plane z=O in this frame. Therefore, all position components

in this appendix are in this alr-traJectory frame.

Circulation of a free vortex layer of width Ar which

springs from one blade is

dUCr)

AFCr) = Ar C13

dr

The equation defining the shape of a single free vortex

is given under the following form

x = _ R (_o-p) + r cos_ y = r sinp (2)

where W is the azimuth angle at which the free vortex
0

left the blade.

Let us single out an elemental vortex layer associated

with two azimuth positions being different by an angle AI#o-

Circulation per unit length in this vorticity layer w111 be

AF(r) AP°

A_ = C 33

2_ As
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where As is the distance between the cyclolds.

r cos%u
As - _ siny tgy - (43

From (2) we have:

Ax i _ R A_
O

Then:

O

i

As M R sin_

R + r sln_

Ar'C r)

C53

and A_ = CB)

En p R slny

Let us replace the free cycloidal vortex layer wlth two

systems of vortex layers; one system of free longitudinal

vortices and one system of free lateral wortlces, Circulation

per unit length of the lateral vortex layer Is:

A_y i A@ sinz =

and the longitudinal one:

AVC r)

2n _ R

L_C r) R + r sln_

2n _u R r cos_

C73

C83
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Aq[,'x = A_ cos:y =

Free lateral rectilinear vortices will exist only within

a circle of radius r. Outside of this

votices will disappear as a result of

the incremental circulation, and only

circle, the lateral

geometric smxmatton of

longitudinal ones will

remain with doubled value of the circulation per unlt length.

R) Nonuniform induced velocity at tall surfaces

As mentioned in the Chapter 3, the nonuniform induced

velocity contribution of the longitudinal vortices is the only

one being co_idered.
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It is assumed that in the trim condition the weloclty

field experienced by the tall rotor and tall surfaces is that

on the wake. The induced velocity field of the longitudinal

vortices can be determined by replacing the actual system

of longitudinal vortices by rectilinear vortices extending

from X " -- CO to X " .4,

Then by applying the Biot-Savart Law, the wertlcal com-

ponent of the induced velocity at a point (xT, yT, O) on the wake

by a free vortex layer of width Ar is given as

AVz(r) =
_F(r) _r @ R * r sin_

an H nR J-r (y - yT) r cos_

dy (Ig)

Let: y = r sinw ; dy = r cosw dw , Then we have:

AVzC r) =

-AVC r)

2n /._ nR
z/z _ R 4 r slnw
/z r sinv, - Yv

dy

-I -C-- *"
r

YT) 1 j_n/_.z d_
r n sin_ - yT/r

(10)

Since:

I

Then we obtain:

AVzCr) I

_M'C r)

(-1

2n /_R

AVCr)

En /_ R

0 -r-_ YT--" r

yv) r

2 + rZ

(11)

/_ R "b Y T

)

/ yt*._ r z

YT ( --r

-r -< YT --"r (lm-)
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A_J-Cr) /a R + YT

2n /_ R /yTZ._ r z

C-1 + .) y_ > r

152

The vertical induced velocity due to all free vortlces

springing from the blade wall be

Vzfy) = _ AVzCr)

dVC r)

dr

dr

- /J R - y I_ dVCr) dr

f 2n /_ R dr _tyZ _ r z

Jo
I /_ R + y _/ dFCr) dr C13)

_.., R Jo dr _ yz _ r z

The distribution of circulation along the rotor radlus

is assumed to be parabolic:

Z
FCr) = a r C R - r ) C14)

dFCr)

dr

= a r C _.R - 3r ) C153

Then we have:

/a R 4. y 3n y

- a C 2R- 3 y CR>y>O)

2n /_R 4

VzC y3 - C 103

/J R • y 3n y

- a C 2R -I. -3 y CO>y>-IO

2n _ R 4

The parameter a is determined by setting llft I weight|

T = p _rCr) VTCr) dr

JO

_0 Z
I p a r C R - r ) 0 r dr = W C173

a I = C_-O_) -- CT

R
C18)
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The normalized nonuniform downwash Is defined as:

VzC y) Y Y 31_y
Cz = - - C_u • -----3----C2 _ )

a R z R R 4 R
( -----3

VzC y) I VzC ),)
= __ ClO)

20(CTC'_R_)/C2/a) I 0 2 Vnot

2 Vnot is the uniform downwash at tail surfaces from

the momentum theory. The lateral distribution of nondlmen-

sional downwash of eq.(10) for p=O. 22 is shown in F_g. 3-1.

Following the same procedure, we obtain:

AV_ r) = AVCr) I ; r zT ( p R • r sln_ ) dy
2n p R _ r ( z z + yz) r cos_

T

AFCr) 1 Fn/z z T ( /_ R 4 r slnp ) dp
2. _u R n a./z z z 4 rZstnZ_

T

im

Al"C r) 1

r 2 4 z z
T

(ao)

Then we have:

Vy(z) =

a r ( 2R - 3r )

r2 + z z

dr

a R = /1 z 4z- C + C-----)
2n R R

z R 4 _'R z 4 z =
4 3(---) z In ( ) )

R z
Cz>O) C21 )

The normalized nonuniform sldewash is defined as:
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Cy =
Vy(z)

a Rz
C

P,_ /a

= _ ( ._j z+ C--)
R

z

• 3 C-----) z In C
R

R + /RZ_ z z

z

Vy(z)

) )

- Cz> O) C _2)
10 2 Vnot

For Z<O, we have VyC-z) = - VyCz).

The longitudinal distribution of the sidewash gi_n by

eq. CR2) for H-O. 22 is shown in Fig. 3-2.

For [z [ < O. 2 R, we use:

a Rz 4y
> O) C23)

VyCz) _ _+ C 1 ) Cz <
2_ R

3) Effects on Tail Surfaces

When there is sideslip, the position of a spanwlse

section of the horizontal tail relative to the center llne

of the wake at the wake layer will be:

y - C Yh + Thx /?f ) CR4)

Then we have the roll moment contribution of the horl-

zontal tail:

Mxh -

= C

mh
P C t VzC

Vh Hc a Yh_Thx{_f ) YhdYh

2 J -mh

p Vh H aC

960n H R

• C 135n

) C 45n R /_ CRh) 4- 160 /_ RZCRh) ll

ThxCRh)4 - 320 R Thx C Rh) 3 ) _]
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4 gOn _u R C Rh) z T z /9z 4. gOn C Rh3 z T s _s
hx hx

- 15n R T 4 f14 _ gn T _hx h× fl_ )
C 2_3

The terms for forming the llnearlzed approximation are

given belows

|

Mxh I_h =O =

p V h Hc C to a Rh s

lgE n

COn Rh - 32 R )

C 26)

p V h H c C t_ a ThxR.ha

gl¢

I gan _ R

C27n Rh - 64 R )

Similarly, the pitch moment contribc_clon_

Myh -
p C L f rh

- --V h Hc _ Thx

2 J -rh

Vz(Yh+Thxflf) dy h

= C

pVhH aTc hx

) C 3a R CRh) s- gn CRh) 4

J gan _ R

+ C g6_ ThxRh R z - 36_ _u R ThxCRh) z) /3

+ Cg@ R T_xRh - 54- T_xCRh)Z) flz

- 12n /_ R T s /_B -- gr_ T 4 /94 )
hx hx

C 273

and the required terms

J p V h H c Thx C t a R CRh) s

cx

Myh 0 (
fir = l gen /._ R

) C3_. R - On Rh )

C_'8)

@Myh [ p V h H c T z C t
hx _

m

8/9f _f=O J 15n

aRRh

C 8R -3n RI_
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For the tail rotor thrust contribution, we begin from

the local angle of attack of the tail rotor:

Vy(z) a R z 4z
> O) (_)

oT = -_ -+ C1 - ------3 Cz <

V 2_ V R
T T

Thrust contributions of the tail rotor due to 1_ontsn_L-

form sidewash at zero sideslip angle and zero angle of

attack can be given as:

8T

= -- Acx (z) dsCz) = 0 C30)TT T

O_
T

When there is an angle of attack variation, the tail :

rotor thrust will vary as:

AT = K
T _10TT

8_
T

TCz) I ds II
1 1

C31)

K is a parameter decided by the correlation wlth flight

test.

The vertical position of a point of the tall rotor rela-

tlve to the wake is

z = z + _T C323
T Tx

Th.o: IAZ = TTx A_ ds I = dx I _z C33)

From experimental data[21], the effect of viscosity will

be significant at z < 0.1R. Therefore, let AoT=O for lzl < 0.1R.

The thrust variation of the tall rotor due to the angle of attack

variation can be obtained by integrating Eq. C313 with the relation

Eq. C33). The same procedure also applies to the vertical tail.


